K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(\frac{n}{n+6}\)=\(1-\frac{6}{n+6}\)

           \(\frac{n+1}{n+7}\)=\(1-\frac{6}{n+7}\)

Vì \(\frac{6}{n+6}>\frac{6}{n+7}\)=> \(\frac{n}{n+6}< \frac{n+1}{n+7}\)Vì phần cần thêm vào càng lớn thì phần có sẵn càng nhỏ 

ủng hộ mik nhaaa

8 tháng 7 2017

Ta có:

\(1-\frac{n}{n+6}=\frac{n+6}{n+6}-\frac{n}{n+6}=\frac{6}{n+6}.\)

\(1-\frac{n+1}{n+7}=\frac{n+7}{n+7}-\frac{n+1}{n+7}=\frac{6}{n+7}.\)

Vì \(n+6< n+7\)nên \(\frac{6}{n+6}>\frac{6}{n+7}\Leftrightarrow1-\frac{6}{n+6}< 1-\frac{6}{n+7}\Leftrightarrow\frac{n}{n+6}< \frac{n+1}{n+7}\)

k với!!!!!!!!!!!!

2 tháng 4 2022

phân số n+1/n+2 lớn hơn

5 tháng 6 2015

                     

5 tháng 6 2015

Ta có: n/3=2n/6

mà 2n phải <7 => n=3

 

AH
Akai Haruma
Giáo viên
27 tháng 10 2023

Lời giải:

$\frac{n+3}{n+4}=\frac{(n+4)-1}{n+4}=1-\frac{1}{n+4}$

$\frac{n+1}{n+2}=\frac{(n+2)-1}{n+2}=1-\frac{1}{n+2}$

Vì $n+4> n+2$ nên $\frac{1}{n+4}< \frac{1}{n+2}$

Suy ra $1-\frac{1}{n+4}> 1-\frac{1}{n+2}$

Hay $\frac{n+3}{n+4}> \frac{n+1}{n+2}$

-------------------------

$\frac{n-1}{n+4}< \frac{n-1}{n+2}=\frac{(n+2)-3}{n+2}=1-\frac{3}{n+2}$

$<1-\frac{n+3}=\frac{n}{n+3}$

26 tháng 6 2017

Ta có : \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)

            \(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)

Mà \(\frac{1}{n+2}>\frac{1}{n+4}\)

Nne : \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)

\(\dfrac{n}{n+3}-\dfrac{n-1}{n+4}\)

\(=\dfrac{n^2+4n-n^2-2n+3}{\left(n+4\right)\left(n+3\right)}=\dfrac{2n+3}{\left(n+4\right)\left(n+3\right)}>0\)

=>n/n+3>(n-1)/(n+4)

a kiếm phân số trung gian để so sánh