Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để so sánh hai phân số này, ta cần tìm chung mẫu số và so sánh tử số của chúng. Trước tiên, ta giải thích cách tính giá trị của các phân số trên:
\begin{align*} \frac{244.395-151}{244+395.243} &= \frac{93.395}{639.243} \ \frac{423134.846267-423133}{423133.846267+423134} &= \frac{1.846267}{846267.846267} \end{align*}
Ta nhận thấy rằng hai phân số này đều có tử số dương. Để so sánh chúng, ta sẽ chuyển chúng về dạng có mẫu số chung bằng cách nhân tử số và mẫu số của mỗi phân số với các số tương ứng sao cho chúng có mẫu số bằng nhau. Ta có:
\begin{align*} \frac{93.395}{639.243} \cdot \frac{846267.846267}{846267.846267} &= \frac{79028520.465624}{53973120994.046461} \ \frac{1.846267}{846267.846267} \cdot \frac{53973120994.046461}{53973120994.046461} &= \frac{9957653.973788}{45756297936518.067262} \end{align*}
Sau đó, ta so sánh tử số của hai phân số trên:
\begin{align*} 79028520.465624 &< 9957653.973788 \ \Rightarrow \frac{93.395}{639.243} &< \frac{1.846267}{846267.846267} \end{align*}
Vậy phân số đầu tiên nhỏ hơn phân số thứ hai.
b: \(M=\dfrac{53\cdot71-18}{71\cdot52+53}=\dfrac{52\cdot71+71-18}{71\cdot52+53}=1\)
\(N=\dfrac{53\cdot107+107-53}{53\cdot107+54}=1\)
\(P=\dfrac{134\cdot269+269-133}{134\cdot269+135}=1\)
=>M=N=P
b.\(B=\dfrac{2n+5}{n+3}\)
\(B=\dfrac{n+n+3+3-1}{n+3}=\dfrac{n+3}{n+3}+\dfrac{n+3}{n+3}-\dfrac{1}{n+3}\)
\(B=1+1-\dfrac{1}{n+3}\)
Để B nguyên thì \(\dfrac{1}{n+3}\in Z\) hay \(n+3\in U\left(1\right)=\left\{\pm1\right\}\)
*n+3=1 => n=-2
*n+3=-1 => n= -4
Vậy \(n=\left\{-2;-4\right\}\) thì B có giá trị nguyên
\(\text{Đặt biểu thức là A:}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}\)
\(\text{Ta có:}\frac{1}{2^2}=\frac{1}{2\times2}< \frac{1}{1\times2}\)
\(\frac{1}{3^2}=\frac{1}{3\times3}< \frac{1}{2\times3}\)
\(\frac{1}{4^2}=\frac{1}{4\times4}< \frac{1}{3\times4}\)
\(...\)
\(\frac{1}{99^2}=\frac{1}{99\times99}< \frac{1}{98\times99}\)
\(\frac{1}{100^2}=\frac{1}{100\times100}=\frac{1}{99\times100}\)
\(\Rightarrow A< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}< 1\)
\(\Rightarrow A< 1\left(đpcm\right)\)
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(N< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(N< 1-\frac{1}{100}\)
\(N< \frac{99}{100}< \frac{75}{100}=\frac{3}{4}\)
\(a,\)
Để A là phân số thì \(n-2\ne0\Rightarrow n\ne2\)
b, Ta có :
\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
Mà \(3⋮n+2\Rightarrow n+2\inƯ(3)=\left\{\pm1;\pm3\right\}\)
Tự xét bảng
a)34000 và 92000
34000 = 34.1000 =(34)1000 = 811000
92000 = 92.1000 = (92)1000 = 811000
Vì 811000 = 811000 nên 34000 = 92000
Câu b tương tự, do ko có thời gian nên bạn tự làm nhé
K nha
92000=(32)2000=32.2000=3400
Vậy 34000=92000
b) 2323=2300.223
3223=3200.323
Trước hết so sánh 2300 và 3200
2300=(23)100=8100
3200=(32)100=9100
Do đó 3200 lớn hơn 2300
Còn 323 dĩ nhiên lớn hơn 223 vì cơ số lớn hơn
Do đó 3223 lớn hơn 2323