\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+...+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2016

= 1.(1/1-1/50)

=49/50

49/50 < 1

Vậy M < 1

8 tháng 5 2016

VẬY M < 1

CÓ GÌ THÌ MIK ĐƯA LỜI GIẢI CHO

TÍCH MIK NHA

29 tháng 7 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\)

29 tháng 7 2018

\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{49\times50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}\)

So sánh \(\frac{49}{50}< 1\)nên \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{49\times50}< 1\)

12 tháng 5 2017

A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

=\(1-\frac{1}{50}\)

Vì \(1-\frac{1}{50}< 1\)nên A < 1

B = \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

=\(\frac{1}{2}-\frac{1}{100}\)

Vì \(\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)nên B < \(\frac{1}{2}\)

12 tháng 5 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}\)

\(\Rightarrow A< 1\)

\(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=\frac{1}{2}-\frac{1}{100}\)

\(\Rightarrow B< \frac{1}{2}\)

10 tháng 5 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}\)

Mà \(\frac{49}{50}\)lại nhỏ hơn 1 \(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 1\)

10 tháng 5 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}< 1\)

M\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}<1\)

=>ĐPCM

30 tháng 4 2015

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{49}-\frac{1}{50}\)

\(1-\frac{1}{50}=\frac{49}{50}\)

vì \(\frac{49}{50}<1\)

nên dãy trên <1

7 tháng 5 2016

49/50>45/50

7 tháng 5 2016

Ta có : 1/1.2 + 1/2.3 + ... + 1/49.50

= 1-1/2+1/2-1/3 +...+1/49-1/50

= 1- 1/50 

= 49/50 > 45/50 = 9/10(đpcm)

5 tháng 5 2016

\(M=1-\frac{1}{50}\) => \(M<1\)

Ta có: \(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)

                                                                                         có 10 số \(\frac{1}{20}\)

Hay  \(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}>\frac{1}{2}\)

8 tháng 4 2018

\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(M=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)

Vì \(\frac{49}{50}\)< 1 nên M < 1.

~~~

#Sunrise

8 tháng 4 2018

\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(M=1-\frac{1}{50}\)

\(M=\frac{50}{50}-\frac{1}{50}\)

\(M=\frac{49}{50}\)\(< \frac{50}{50}\)

\(M< 1\)

Chúc bạn học tốt nha !!! 

16 tháng 8 2016

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{1}-\frac{1}{50}\)

\(=\frac{49}{50}\)

16 tháng 8 2016

1/1×2 + 1/2×3 + 1/3×4 + ... + 1/49×50

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50

= 1 - 1/50

= 49/50