K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

(10099+9999)100=10099x100+9999x100

(100100+99100)99=100100x99+99100x99

Vì100100x99+99100x99=10099x100+9999x100

=>M=N

Các bạn nhớ nha !!!

22 tháng 3 2017

các cậu kết bạn với mình nha

10 tháng 7 2019

VÌ 20192019+120192020 +1=140384040 >20192018+120192019 =140384038 nên A>B

10 tháng 7 2019

N > M nhé bạn.

10 tháng 7 2019

1

\(A=\frac{2019^{2019}+1}{2019^{2020}+1}< \frac{2019^{2019}+1+2018}{2019^{2020}+1+2018}=\frac{2019^{2019}+2019}{2019^{2020}+2019}=\frac{2019\left(2019^{2018}+1\right)}{2019\left(2019^{2019}+1\right)}\)

\(=\frac{2019^{2018}+1}{2019^{2019}+1}\)

10 tháng 7 2019

2

\(M=\frac{100^{101}+1}{100^{100}+1}< \frac{100^{101}+1+99}{100^{100}+1+99}=\frac{100^{101}+100}{100^{100}+100}=\frac{100\left(100^{100}+1\right)}{100\left(100^{99}+1\right)}\)

\(=\frac{100^{100}+1}{100^{99}+1}=N\)

21 tháng 9 2023

Ta có:

\(M=\dfrac{100^{100}+1}{100^{99}+1}\)

\(\Rightarrow\dfrac{M}{100}=\dfrac{100^{100}+1}{100\cdot\left(100^{99}+1\right)}\)

\(\Rightarrow\dfrac{M}{100}=\dfrac{100^{100}+1}{100^{100}+100}\)

\(\Rightarrow\dfrac{M}{100}=1-\dfrac{99}{100^{100}+100}\) 

\(N=\dfrac{100^{101}+1}{100^{100}+1}\)

\(\Rightarrow\dfrac{N}{100}=\dfrac{100^{101}+1}{100\cdot\left(100^{100}+1\right)}\)

\(\Rightarrow\dfrac{N}{100}=\dfrac{100^{101}+1}{100^{101}+100}\)

\(\Rightarrow\dfrac{N}{100}=1-\dfrac{99}{100^{101}+100}\)

Mà: \(100^{101}>100^{100}\)

\(\Rightarrow100^{101}+100>100^{100}+100\)

\(\Rightarrow\dfrac{99}{100^{101}+100}< \dfrac{99}{100^{100}+100}\)

\(\Rightarrow1-\dfrac{99}{101^{101}+100}< 1-\dfrac{99}{100^{100}+100}\)

\(\Rightarrow\dfrac{N}{100}< \dfrac{M}{100}\)

\(\Rightarrow N< M\)

17 tháng 7 2015

ta có 9999= 99 *101. 
do đó 9999^10 = 99 ^10 * 101^10 
còn 99^20 = 99^10 * 99^10 
vì 99^10 < 101^10 nên 99^10 * 99^10 < 99 ^10 * 101^10 . 
vậy 99^20 < 9999^10. 

17 tháng 7 2015

giải

ta có : 9920 = 992x10 = (992)10

                               = 980110

999910

vì 9801<9999

nên 980110 < 999910

=> 9920 < 999910

giải vậy đúng ko bạn

23 tháng 9 2016

\(99^{20}=\left(99^2\right)^{10}=9801^{10}\)

Vì \(9801< 9999\)

=>\(9801^{10}< 9999^{10}\)

hay\(99^{20}< 9999^{10}\)

21 tháng 7 2016

\(99^{20}=\left(99^2\right)^{10}=\left(99\times99\right)^{10}< \left(99\times101\right)^{10}=9999^{10}\)

Vậy 9920 < 999910

Chúc bạn học tốt ^^

21 tháng 7 2016

Ta có: \(^{99^{20}}\)=\(99^{2.10}\)=\(9081^{10}\)

Vì \(9081^{10}\) <\(9999^{10}\)

nên \(99^{20}\)<\(9999^{10}\)

20 tháng 10 2015

M= \(\frac{100^{100}+1}{100^{99}+1}=\frac{100^{100}+100-99}{100^{99}+1}=\frac{100^{100}+100}{100^{99}+1}-\frac{99}{100^{99}+1}=\frac{100.\left(100^{99}+1\right)}{100^{99}+1}-\frac{99}{100^{99}+1}\)

\(=100-\frac{99}{100^{99}+1}\)

N= \(\frac{100^{101}+1}{100^{100}+1}=\frac{100^{101}+100-99}{100^{100}+1}=\frac{100^{101}+100}{100^{100}+1}-\frac{99}{100^{100}+1}\)

\(=\frac{100.\left(100^{100}+1\right)}{100^{100}+1}-\frac{99}{100^{100}+1}=100-\frac{99}{100^{100}+1}\)

Vi 100100+1>10099+1

=> \(\frac{99}{100^{99}+1}>\frac{99}{100^{100}+1}\)

=> \(100-\frac{99}{100^{99}+1}

20 tháng 10 2015

uk ai cũng có lúc nhầm mà chẳng sao đâu bạn ak