K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2019

Bạn tham khảo :

Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 7 - Học toán với OnlineMath

23 tháng 11 2019

Mai Hiệp Đức bạn chỉ cần vào câu hỏi tương tự sẽ thây nha !

Đặt \(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}=B;\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}=C\)

\(A=\left(B+1\right)\cdot C-B\cdot\left(C+1\right)\)

\(=BC+C-BC-B\)

=C-B

\(=\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}-\dfrac{1}{5}-\dfrac{2013}{2014}-\dfrac{2015}{2016}=-\dfrac{1}{10}\)

24 tháng 3 2017

tất nhên là bằng 00000000000000000000000000000000000000

4 tháng 10 2016

Vì \(\left(2x_1-3y_1\right)^{2016}\ge0;\left(2x_2-3y_2\right)^2\ge0;......;\left(2x_{2015}-3y_{2015}\right)\ge0\)

nên  \(\left(2x_1-3y_1\right)^{2016}+\left(2x_2-3y_2\right)^{2016}+...+\left(2x_{2015}-3y_{2015}\right)\le0\)

\(\Leftrightarrow\left(2x_1-3y_1\right)^{2016}+\left(2x_2-3y_2\right)^{2016}+..+\left(2x_{2015}-3y_{2015}\right)^{2016}=0\)

\(\Leftrightarrow2x_1-3y_1=0;2x_2-3y_2=0;....;2x_{2015}-3y_{2015}=0\)

\(\Leftrightarrow2x_1=3y_1\)           

     \(2x_2=3y_2\)

    ............................

    \(2x_{2015}=3y_{2015}\)

\(\Leftrightarrow2\left(x_1+x_2+...+x_{2015}\right)=3\left(y_1+y_2+...+y_{2015}\right)\)

\(\Leftrightarrow\)\(\frac{x_1+x_2+x_3+...+x_{2015}}{y_1+y_2+y_3+...+y_{2015}}=\frac{3}{2}\)

 

26 tháng 9 2016

Ta có:

\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)

\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)

\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)

Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)

23 tháng 9 2016

1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)

\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)

\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)

\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)

\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)

\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)

Mà \(2015^{2014}< 2013.2016^{2014}.2015\)

nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Vậy \(2015^{2016}>2016^{2015}.\)

30 tháng 7 2016

TA CÓ:

\(\hept{\begin{cases}\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|^{2015}\ge0\\\left|y+2015\right|\ge0\Rightarrow\left|y+2015\right|^{2016}\ge0\end{cases}}.\)

Vậy\(\left|x+2016\right|^{2015}+\left|y+2016\right|^{2015}\ge0\)

30 tháng 7 2016

be hon hoac bang ko ms dung ban a minh ghi nham