\(\left(-\frac{1}{2}\right)^{513}\)và \(\left(-\frac{1}{3}\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

So sánh:\(\left(-\frac{1}{2}\right)^{513}\text{ và }\left(-\frac{1}{3}\right)^{315}\)

\(\left(-\frac{1}{2}\right)^{513}=0:\left(-\frac{1}{3}\right)=0\)

\(\Rightarrow\left(-\frac{1}{2}\right)^{513}=\left(-\frac{1}{3}\right)^{315}\).

23 tháng 8 2018

Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)

               \(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)

               \(=\frac{1.2....18.19}{2.3...19.20}\)

               \(=\frac{1}{20}>\frac{1}{21}\)

Vậy A > 1/21

7 tháng 10 2020

1) Ta có: \(\left|9y-1\right|+\left(2x+3\right)^2=0\)

Mà \(\hept{\begin{cases}\left|9y-1\right|\ge0\\\left(2x+3\right)^2\ge0\end{cases}}\left(\forall x,y\right)\)

=> \(\left|9y-1\right|+\left(2x+3\right)^2\ge0\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|9y-1\right|=0\\\left(2x+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}9y-1=0\\2x+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{1}{9}\end{cases}}\)

Vậy \(\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{1}{9}\end{cases}}\)

7 tháng 10 2020

2)

a) Ta có: \(\left[\left(-\frac{1}{3}\right)^7\right]^4=\left(\frac{1}{3}\right)^{28}=\frac{1}{3^{28}}\)

và \(\left[\left(-\frac{1}{2}\right)^{14}\right]^2=\left(\frac{1}{2}\right)^{28}=\frac{1}{2^{28}}\)

Vì \(\frac{1}{3^{28}}< \frac{1}{2^{28}}\Rightarrow\left[\left(-\frac{1}{3}\right)^7\right]^4< \left[\left(-\frac{1}{2}\right)^{14}\right]^2\)

b) Ta có: \(\left(-\frac{2}{3}\right)^{12}=\left[\left(-\frac{2}{3}\right)^2\right]^6=\left(\frac{4}{9}\right)^6\)

Ta thấy \(0< \frac{4}{9}< 1\)\(\Rightarrow\left(\frac{4}{9}\right)^6>\left(\frac{4}{9}\right)^7\)

\(\Rightarrow\left(-\frac{2}{3}\right)^{12}>\left(\frac{4}{9}\right)^7\)

9 tháng 8 2017

Ta có : \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{20}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{19}{20}\)

\(=\frac{1.2.3.....19}{2.3.4.....20}\)

\(=\frac{1}{20}>\frac{1}{21}\)

9 tháng 8 2017

SORRY EM MỚI LỚP 6