K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2015

x=[(1/2)^3]^75 =>(1/8)^75

y=[(1/3)^2]^75 =>(1/9)^75

vì 1/8>1/9

=>(1/2)^225  >  (1/3)^150

14 tháng 2 2016

ý b anh biết làm nè 

14 tháng 2 2016

ủng hộ mình lên 210 diểm nha 

17 tháng 6 2015

(1/2)1500=(1/26)250=(1/64)250

Do 1/16>1/64 =>(1/16)250>(1/64)250

Vậy (1/16)250>(1/2)1500

17 tháng 6 2015

\(\left(\frac{1}{16}\right)^{250}\) và \(\left(\frac{1}{2}\right)^{1500}\)

=> \(\left(\frac{1}{16}\right)^{250}\) và \(\left(\left(\frac{1}{2}\right)^6\right)^{250}\)

=> \(\frac{1}{16}\) và \(\left(\frac{1}{2}\right)^6\)

=> \(\frac{1}{16}\) và \(\frac{1}{64}\)

=>  \(\frac{1}{16}\) >  \(\frac{1}{64}\)  hay  \(\left(\frac{1}{16}\right)^{250}\) >  \(\left(\frac{1}{2}\right)^{1500}\)

 

22 tháng 9 2019

3)

\(\left(\frac{1}{2}\right)^{x+1}=\frac{1}{16}\)

\(\left(\frac{1}{2}\right)^{x+1}=\left(\frac{1}{2}\right)^4\)

\(x+1=4\)

\(x=4-1\)

\(x=3\)

Vậy \(x=3.\)

Chúc bạn học tốt!

20 tháng 9 2015

\(y=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)....\left(\frac{1}{2014^2}-1\right)\)

\(y=\left(\frac{-1.3}{2.2}\right)\left(\frac{-2.4}{3.3}\right)....\left(\frac{-2013.2015}{2014.2014}\right)\)

\(y=-\left(\frac{1.2....2013.3.4...2015}{2.3....2014.2.3....2014}\right)\)

\(y=-\left(\frac{2015}{2014.2}\right)\)

\(y=\frac{-2015}{4028}\)

\(x=\frac{-1}{2}=\frac{-2014}{4028}\)

Vì \(\frac{-2015}{4028}

14 tháng 5 2016

2.ta có |x-1|+(y+2)mũ 20=0=>x-1=0 đồng thời y+2=0

<=>x=1 và y=-2

Thay x=1 y=-2 vào B ta có:13.(1)^5-5.(-2)^3+2016=1989

7 tháng 6 2016

a). Nhận xét rằng từng số hạng của tổng vế phải (VP) đều >=0 nên VP >= 0. Để dấu "=" xảy ra thì từng số hạng trong tổng VP đều bằng 0. Do đó ta có: x= 1/2; y=-3/2; z=-3/2.

b) Tương tự, VP>=0 để VP<=0 = VT chỉ xảy ra khi đạt dấu "=". Cho từng số hạng của VP =0, ta được: x=1; y=2/3; z=-1.

21 tháng 5 2016
  1. Ta chứng minh bất đẳng thức phụ dưới đây: \(\frac{1}{\sqrt{x}\left(x+1\right)}=\frac{\sqrt{x}}{x\left(x+1\right)}=\sqrt{x}\left(\frac{1}{x}-\frac{1}{x+1}\right)=\sqrt{x}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x+1}}\right)\)\(=\left(1+\frac{\sqrt{x}}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)< 2\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\)

Áp dụng  : \(\frac{1}{\sqrt{1}.2}< 2.\left(1-\frac{1}{\sqrt{2}}\right)\)

\(\frac{1}{\sqrt{2}.3}< 2.\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)\)

...................................

\(\frac{1}{\sqrt{2015}.2016}< 2.\left(\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)\)

Cộng các BĐT trên với nhau được : \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}}< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)=2\left(1-\frac{1}{\sqrt{2016}}\right)< 2\left(1-\frac{1}{\sqrt{2025}}\right)=\frac{88}{45}\)

Từ đó suy ra đpcm

Cái ............... là gì vậy bn