Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: -7x+13>-7y+13
\(\Leftrightarrow-7x>-7y\)
hay x<y
b) Ta có: 11x-1>11y+1
mà 11x+1>11x-1
nên 11x+1>11y+1
\(\Leftrightarrow11x>11y\)
hay x>y
a, \(-7x+13>-7y+13\Leftrightarrow-7x>-7y\Leftrightarrow x< y\)
b, \(11x-1>11y+1\Leftrightarrow11x+1>11y+1\Leftrightarrow x>y\)
c, \(-19x-37< -19y-37\Leftrightarrow-19x< -19y\Leftrightarrow x>y\)
d, \(-23x-2>-23y+3\Leftrightarrow-23x+3>-23y+3\Leftrightarrow x< y\)
(x³ - 4x² - 3x² + 12x + 2x - 8 =0
x²(x - 4) - 3x(x - 4) + 2(x - 4) =0
(x - 4)(x² - 3x + 2) =0
(x - 4)(x - 1)(x - 2) =0
=>X-4=0 hoặc x-1=0 hoặc x-2=0
(tự giải tiếp nhá)
Bài 1:
\(a,=11\left(x+y\right)+x\left(x+y\right)=\left(x+11\right)\left(x+y\right)\\ b,=225-\left(2x+y\right)^2=\left(15-2x-y\right)\left(15+2x+y\right)\)
Bài 2:
\(A=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\\ A=\left(72-2\right)\left(120-2\right)=70\cdot118=8260\)
Bài 3:
\(a,\Leftrightarrow\left(x+1\right)^2-\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+1-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\\ \Leftrightarrow24x+25=49\\ \Leftrightarrow24x=24\Leftrightarrow x=1\)
a) \(\left(5,11\right)=1\) nên phương trình có vô số nghiệm.
Phương trình có một nghiệm là \(\left(3;1\right)\) nên nghiệm tổng quát của phương trình trên là
\(\left\{{}\begin{matrix}x=3+11t\\y=1+5t\end{matrix}\right.\), \(t \in \mathbb{Z}\).
b) \(\left(7,5\right)=1\) nên phương trình có vô số nghiệm.
Phương trình có một nghiệm là \(\left(4;23\right)\) nên nghiệm tổng quát của phương trình trên là
\(\left\{{}\begin{matrix}x=4+5t\\y=23-7t\end{matrix}\right.\), \(t \in \mathbb{Z}\).
c) Bạn đọc tự giải.
Bài 4 :
Thay x=y+5 , ta có :
a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65
=(y+5)*(y+7)+y^2-2y-2y^2-10y+65
=y^2+7y+5y+35-y^2-2y-2y^2-10y+65
= 100
Bài 5 :
A = 15x-23y
B = 2x-3y
Ta có : A-B
= ( 15x -23y)-(2x-3y)
=15x-23y-2x-3y
=13x-26y
=13x*(x-2y) chia hết cho 13
=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại
ta có x2+5x+4
=x2+x+4x+4
=(x2+x)+(4x+4)
=x(x+1)+4(x+1)
=(x+1)(x+4)
tương tự ta đc
x2+11x+28=(x+4)(x+7)
x2+17x+70=(x+7)(x+10)
x2+23x+130=(x+10)(x+13)
=>\(\dfrac{1}{\left(x+1\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+7\right)}+\dfrac{1}{\left(x+7\right)\left(x+10\right)}+\dfrac{1}{\left(x+10\right)\left(x+13\right)}=\dfrac{4}{13}\)\(\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{3}{\left(x+4\right)\left(x+7\right)}+\dfrac{3}{\left(x+7\right)\left(x+10\right)}+\dfrac{3}{\left(x+10\right)\left(x+11\right)}=\dfrac{4}{13}\)=>\(\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}+....+\dfrac{1}{x+13}=\dfrac{4}{13}\)
=>\(\dfrac{1}{x+1}-\dfrac{1}{x+13}=\dfrac{4}{13}\)
=>\(\dfrac{13\left(x+13\right)}{13\left(x+1\right)\left(x+13\right)}-\dfrac{13\left(x+1\right)}{13\left(x+1\right)\left(x+13\right)}=\dfrac{4\left(x+1\right)\left(x+13\right)}{13\left(x+1\right)\left(x+13\right)}\)
=> 13(x+13)-13(x+1)=4(x+1)(x+13)
=> 13[(x+13)-(x+1)]=(4x+4)(x+13)
=>13(x+13-x-1)=4x2+52x+4x+52
=13.12=4x2+56x+52
=>4x2+56x+52=156
=>4x2+56x-104=0
giống bài bên kia mình vừa giải xong, thôi giải lại
a, \(-7x+13>-7y+13\Leftrightarrow-7x>-7y\Leftrightarrow x< y\)
b, \(11x-1>11y+1\)
Ta có : \(11x-1>11y+1\Rightarrow11x+1>11y+1\Rightarrow x>y\)
c, \(-19x-37< -19y-37\Leftrightarrow-19x< -19y\Leftrightarrow x>y\)
d, \(-23x-2>-23y+3\)
Ta có : \(-23x-2>-23y+3\Rightarrow-23x+3>-23y+3\Rightarrow x< y\)