Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) \(12^8\) và \(8^{12}\)
Ta có: \(12^8=\left(2^4\right)^8=2^{32}.\)
\(8^{12}=\left(2^3\right)^{12}=2^{36}.\)
Vì \(32< 36\) nên \(2^{32}< 2^{36}.\)
=> \(12^8< 8^{12}.\)
b) \(\left(-5\right)^{39}\) và \(\left(-2\right)^{91}\)
Ta có: \(\left(-5\right)^{39}=\left[\left(-5\right)^3\right]^{13}=\left(-125\right)^{13}.\)
\(\left(-2\right)^{91}=\left[\left(-2\right)^7\right]^{13}=\left(-128\right)^{13}.\)
Vì \(\left(-125\right)>\left(-128\right)\) nên \(\left(-125\right)^{13}>\left(-128\right)^{13}.\)
=> \(\left(-5\right)^{39}>\left(-2\right)^{91}.\)
2)
a) Tích của hai lũy thừa: \(x^{16}=x^{15}.x\)
b) Lũy thừa của \(x^4\): \(x^{16}=\left(x^4\right)^4.\)
c) Thương của hai lũy thừa: \(x^{16}=x^{18}:x^2.\)
Chúc bạn học tốt!
Bài làm
Đặt a - b = x ; b - c = y ; c - a = z
=> x + y + z = 0
Ta có :
\(N=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2.\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2.\left(\frac{x+y+z}{xyz}\right)\)
=> \(N=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)( Vì x + y + z = 0 )
Vậy ta có đpcm
a/ \(63^7< 64^7=\left(4^3\right)^7=4^{21}\)
\(16^{12}=\left(4^2\right)^{12}=4^{24}\)
Suy ra \(63^7< 4^{21}< 4^{24}=16^{12}\)
Vậy \(63^7< 16^{12}\)
vì 2225 = (23)75 = 875
và 3150 = (32)75 = 975
vì 8<9 => 875 < 975 nên 2225 < 3150
vậy 2225 < 3150
a) \(63^7\)và \(16^{12}\)
Có \(63^7< 64^7=\left(2^6\right)^7=2^{42}\)
\(16^{12}=\left(2^4\right)^{12}=2^{48}\)
Mà \(2^{42}< 2^{48}\Rightarrow63^7< 64^7< 16^{12}\)=) \(63^7< 16^{12}\)
b) \(17^{14}\)và \(31^{11}\)
Có \(17^{14}>16^{14}=\left(2^4\right)^{14}=2^{56}\)
\(31^{11}< 32^{11}=\left(2^5\right)^{11}=2^{55}\)
Vì \(2^{56}>2^{55}\Rightarrow17^{14}>16^{14}>32^{11}>31^{11}\)
=) \(17^{14}>31^{11}\)
c) \(2^{67}\)và \(5^{21}\)
Có \(5^{21}< 8^{21}=\left(2^3\right)^{21}=2^{63}\)
Vì \(2^{67}>2^{63}\Rightarrow2^{67}>8^{21}>5^{21}\)
=) \(2^{67}>5^{21}\)
a) 2100 = ( 22 )50 = 450
Ta có : 450 > 350
=> 2100 > 350 ( đpcm )
b) đương nhiên là 3200 lớn hơn rồi.
c) Ta có : 5222 = ( 52 )111 = 25111 ( 1)
2555 = ( 25 )111 = 32111 ( 2)
Từ (1) và (2) => 5222<2555