Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước tiên ta có: \(\sqrt[2009]{19^{2009}+5^{2009}}>\sqrt[2009]{19^{2009}}=19\)
và \(\sqrt[2009]{19^{2009}+5^{2009}}>\sqrt[2009]{5^{2009}}=5\)
Ta có: \(\sqrt[2009]{A}=\left(19^{2009}+5^{2009}\right)\sqrt[2009]{19^{2009}+5^{2009}}\)
\(\sqrt[2009]{B}=19^{2010}+5^{2010}\)
\(\Rightarrow\sqrt[2009]{A}-\sqrt[2009]{B}=\left(19^{2009}+5^{2009}\right)\sqrt[2009]{19^{2009}+5^{2009}}-\left(19^{2010}+5^{2010}\right)\)
\(=\left(19^{2009}.\sqrt[2009]{19^{2009}+5^{2009}}-19^{2010}\right)+\left(5^{2009}.\sqrt[2009]{19^{2009}+5^{2009}}-5^{2010}\right)\)
\(=19^{2009}\left(\sqrt[2009]{19^{2009}+5^{2009}}-19\right)+5^{2009}\left(\sqrt[2009]{19^{2009}+5^{2009}}-5\right)\)
\(>19^{2009}.\left(19-19\right)+5^{2009}.\left(5-5\right)=0\)
\(\Rightarrow\sqrt[2009]{A}>\sqrt[2009]{B}\)
\(\Rightarrow A>B\)
Ta có :
\(B=\dfrac{2009^{2010}-2}{2009^{2011}-2}< 1\)
\(\Leftrightarrow B< \dfrac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\dfrac{2009^{2010}+2009}{2009^{2011}+2009}=\dfrac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\dfrac{2009^{2009}+1}{2009^{2010}+1}=A\)
\(\Leftrightarrow A>B\)
\(A>B\),có lẽ là bởi vì \(A\)có mũ 2010 ;còn \(B\)thì lại có mũ 2009.
Không rõ bạn muốn so sánh tổng đã cho với cái gì ? Còn nếu như bạn Bibo Bobi so sánh các số hạng của tổng mà cho rằng theo thứ tự nhỏ dần thì không đúng đâu.Chẳng hạn ta thử so sánh 2008/2009 và 2009/2010.
Nếu cả 2 phân số này cùng nhân với tích (2009*2010) thì lần lượt được 2008*2010 và 2009^2.
Mà 2008*2010=(2009-1)*(2009+1)= 2009^2-1.
Rõ ràng số trước nhỏ hơn số sau,vậy 2008/2009<2009/2010 tức là theo thứ tự lớn dần.
Ta có: 4=1+1+1+1 = \(\frac{2009}{2009}+\frac{2010}{2010}+\frac{2011}{2011}+\frac{2008}{2008}\)\(=\frac{2008}{2009}+\frac{1}{2009}+\frac{2009}{2010}+\frac{1}{2010}+\frac{2010}{2011}+\frac{1}{2011}+\frac{2008}{2008}\)
Xét A=\(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2008}\)
= \(\frac{2009}{2009}+\frac{2010}{2010}+\frac{2011}{2011}+\frac{2008}{2008}+\frac{1}{2008}+\frac{1}{2008}+\frac{1}{2008}\)
Xét \(\frac{1}{2009}< \frac{1}{2008};\frac{1}{2010}< \frac{1}{2008};\frac{1}{2011}< \frac{1}{2008}\)
=> 4< A
câu a ta so sánh số đối của 2 phân số này.nếu ps nào có giá trị tuyệt đối lớn hơn thì nhỏ hơn.
câu b ta nhân cả A và B với 2009 rồi so sánh 2009A với 2009B.ta được A>B
A= (\(\left(\frac{19^{2010}}{19}+\frac{5^{2010}}{5}\right)^{2010}\)=\(\frac{\left(5.19^{2010}+19.5^{2010}\right)^{2010}}{19^{2010}.5^{2010}}\)= A(1)/A(2)
B = \(\frac{\left(19^{2010}+5^{2010}\right)^{2010}}{19^{2010}+5^{2010}}\)= B(1)/B(2)
Ta thấy A(1) >B(1), A(2)<B(2) => A>B
ủa bạn duchinhle tại sao 19^2010.5^2010 lại lớn hơn 19^2020+5^2010