K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 9 2024

\(\dfrac{M}{100}=\dfrac{100^{100}+1}{100.\left(100^{99}+1\right)}=\dfrac{100^{100}+1}{100^{100}+100}=\dfrac{100^{100}+100-99}{100^{100}+100}=1-\dfrac{99}{100^{100}+100}\)

\(\dfrac{N}{100}=\dfrac{100^{101}+1}{100.\left(100^{100}+1\right)}=\dfrac{100^{101}+1}{100^{101}+100}=\dfrac{100^{101}+100-99}{100^{101}+100}=1-\dfrac{99}{100^{101}+100}\)

Do \(100^{101}>100^{100}\)nên \(100^{101}+100>100^{100}+100\)

\(\Rightarrow-\dfrac{99}{100^{101}+100}>-\dfrac{99}{100^{100}+100}\)

\(\Rightarrow\dfrac{M}{100}>\dfrac{N}{100}\Rightarrow M>N\)

10 tháng 7 2019

1

\(A=\frac{2019^{2019}+1}{2019^{2020}+1}< \frac{2019^{2019}+1+2018}{2019^{2020}+1+2018}=\frac{2019^{2019}+2019}{2019^{2020}+2019}=\frac{2019\left(2019^{2018}+1\right)}{2019\left(2019^{2019}+1\right)}\)

\(=\frac{2019^{2018}+1}{2019^{2019}+1}\)

10 tháng 7 2019

2

\(M=\frac{100^{101}+1}{100^{100}+1}< \frac{100^{101}+1+99}{100^{100}+1+99}=\frac{100^{101}+100}{100^{100}+100}=\frac{100\left(100^{100}+1\right)}{100\left(100^{99}+1\right)}\)

\(=\frac{100^{100}+1}{100^{99}+1}=N\)

20 tháng 10 2015

M= \(\frac{100^{100}+1}{100^{99}+1}=\frac{100^{100}+100-99}{100^{99}+1}=\frac{100^{100}+100}{100^{99}+1}-\frac{99}{100^{99}+1}=\frac{100.\left(100^{99}+1\right)}{100^{99}+1}-\frac{99}{100^{99}+1}\)

\(=100-\frac{99}{100^{99}+1}\)

N= \(\frac{100^{101}+1}{100^{100}+1}=\frac{100^{101}+100-99}{100^{100}+1}=\frac{100^{101}+100}{100^{100}+1}-\frac{99}{100^{100}+1}\)

\(=\frac{100.\left(100^{100}+1\right)}{100^{100}+1}-\frac{99}{100^{100}+1}=100-\frac{99}{100^{100}+1}\)

Vi 100100+1>10099+1

=> \(\frac{99}{100^{99}+1}>\frac{99}{100^{100}+1}\)

=> \(100-\frac{99}{100^{99}+1}<100-\frac{99}{100^{100}+1}\)

=> M<N

20 tháng 10 2015

uk ai cũng có lúc nhầm mà chẳng sao đâu bạn ak

24 tháng 9 2016

a) Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a;b;m \(\in\) N*)

Ta có:

\(A=\frac{2008^{2008}+1}{2008^{2009}+1}< \frac{2008^{2008}+1+2007}{2009^{2009}+1+2007}\)

\(A< \frac{2008^{2008}+2008}{2008^{2009}+2008}\)

\(A< \frac{2008.\left(2008^{2007}+1\right)}{2008.\left(2008^{2008}+1\right)}=\frac{2008^{2007}+1}{2008^{2008}+1}=B\)

=> A < B

b) Áp dụng \(\frac{a}{b}>1\Leftrightarrow\frac{a}{b}>\frac{a+m}{b+m}\) (a;b;m \(\in\) N*)

Ta có: 

\(N=\frac{100^{101}+1}{100^{100}+1}>\frac{100^{101}+1+99}{100^{100}+1+99}\)

\(N>\frac{100^{101}+100}{100^{100}+100}\)

\(N>\frac{100.\left(100^{100}+1\right)}{100.\left(100^{99}+1\right)}=\frac{100^{100}+1}{100^{99}+1}=M\)

=> M > N

Cảm ơn bạn nhiều 

12 tháng 8 2017

\(A=\dfrac{10^{99}+1}{10^{100}+1}\)

\(\Leftrightarrow10A=\dfrac{10\left(10^{99}+1\right)}{10^{100}+1}\)

\(\Leftrightarrow10A=\dfrac{10^{100}+10}{10^{100}+1}=\dfrac{10^{100}+1+9}{10^{100}+1}=1+\dfrac{9}{10^{100}+1}\)

\(B=\dfrac{10^{100}+1}{10^{101}+1}\)

\(\Leftrightarrow10B=\dfrac{10\left(10^{100}+1\right)}{10^{101}+1}\)

\(\Leftrightarrow10B=\dfrac{10^{101}+10}{10^{101}+1}=\dfrac{10^{101}+1+9}{10^{101}+1}=1+\dfrac{9}{10^{101}+1}\)

Do \(\dfrac{9}{10^{100}+1}>\dfrac{9}{10^{101}+1}\) nên \(10A>10B\)

\(\Rightarrow A>B\)

12 tháng 8 2017

Áp dụng tính chất:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(B=\dfrac{10^{100}+1}{10^{101}+1}< 1\)

\(B< \dfrac{10^{100}+1+9}{10^{101}+1+9}\)

\(B< \dfrac{10^{100}+10}{10^{101}+10}\)

\(B< \dfrac{10\left(10^{99}+1\right)}{10\left(10^{100}+1\right)}\)

\(B< \dfrac{10^{99}+1}{10^{100}+1}=A\)

\(B< A\)

8 tháng 3 2017

a100=101

24 tháng 10 2017

mk ko bt 123

16 tháng 5 2017

\(\dfrac{a_1-1}{100}=\dfrac{a_2-2}{99}=\dfrac{a_3-3}{98}=....=\dfrac{a_{100}-100}{1}\\ =\dfrac{a_1-1+a_2-2+a_3-3+....+a_{100}-100}{1+2+....+100}\\ =\dfrac{\left(a_1+a_2+....+a_{100}\right)-\left(1+2+3+....+100\right)}{5050}=\dfrac{10100-5050}{5050}\\ =\dfrac{5050}{5050}=1\\ \Leftrightarrow a_{100}-100=1\\ \Leftrightarrow a_{100}=101\)

16 tháng 5 2017

Bài 1:

-Áp dụng tính chất của dãy tỉ số bằng nhau ta có:


a1aa11100=a2299=a3398=...=a1001001a1−1100=a2−299=a3−398=...=a100−1001

Bạn công tất cả các số lại sẽ ra.

14 tháng 8 2019

a) +) Có \(A=\frac{13^{15}+1}{13^{16}+1}\)=> 13A = \(\frac{13\left(13^{15}+1\right)}{13^{16}+1}\)

= \(\frac{13^{16}+13}{13^{16}+1}=\frac{13^{16}+1+12}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)(1)

+) Có \(B=\frac{13^{16}+1}{13^{17}+1}\)=> 13B =\(\frac{13\left(13^{16}+1\right)}{13^{17}+1}\)

=\(\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)(2)

+) Từ (1) và (2) => \(1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)

<=> 13A>13B <=> A> B

b) +) Có A=\(\frac{1999^{1999}+1}{1999^{1998}+1}\) => \(\frac{A}{1999}=\frac{1999^{1999}+1}{1999^{1999}+1999}=\frac{1999^{1999}+1999-1998}{1999^{1999}+1999}\)

=\(1-\frac{1998}{1999^{1999}+1999}\) (1)

+) Có B =\(\frac{1999^{2000}+1}{1999^{1999}+1}\)

=> \(\frac{B}{1999}=\frac{1999^{2000}+1}{1999^{2000}+1999}=1-\frac{1998}{1999^{2000}+1999}\)(2)

+) Từ (1) và (2) => \(1-\frac{1998}{1999^{1999}+1999}\)< \(1-\frac{1998}{1999^{2000}+1999}\)

<=> \(\frac{A}{1999}< \frac{B}{1999}\) <=> A< B

16 tháng 10 2022

c: \(\dfrac{A}{10}=\dfrac{100^{100}+1}{100^{100}+10}=1-\dfrac{9}{100^{100}+10}\)

\(\dfrac{B}{10}=\dfrac{100^{69}+1}{100^{69}+10}=1-\dfrac{9}{100^{69}+10}\)

Ta có:  100^100+10>100^69+10

=>-9/(100^100+10)<-9/(100^69+10)

=>A/10<B/10

=>A<B

14 tháng 3 2017

\(A=1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+...+\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}\)

\(\Rightarrow2A=2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{99}{2^{98}}+\dfrac{100}{2^{99}}\)

\(\Rightarrow2A-A=\left(2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{99}{2^{98}}+\dfrac{100}{2^{99}}\right)-\left(1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+...+\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}\right)\)

\(\Rightarrow A=\left(2-1\right)+\dfrac{3}{2^2}+\left(\dfrac{4}{2^3}-\dfrac{3}{2^3}\right)+....\left(\dfrac{99}{2^{98}}-\dfrac{98}{2^{98}}\right)-\dfrac{100}{2^{100}}\)

\(\Rightarrow A=1+\dfrac{3}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}-\dfrac{100}{2^{100}}\)

\(\Rightarrow A=1+\dfrac{3}{2^2}+\left(\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}\right)-\dfrac{100}{2^{100}}\)

\(\Rightarrow A=1+\dfrac{3}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

14 tháng 3 2017

Là còn lại A= 2- \(\dfrac{51}{2^{99}}\) chi bn?