K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

Ta có 2004/2003 =  2003+ 1/ 2003 = 1 + 1/2003

2003/2002= 2002 + 1/ 2002 = 1+ 1/2002

Do 1/2003 < 1/2002 =>  1 + 1/2003 <  1+ 1/2002 hay 2004/2003 < 2003/2002

30 tháng 5 2017

\(\frac{2004}{2003}\)= 1,0004992

\(\frac{2003}{2002}\)= 1,0004995

Vậy ,\(\frac{2003}{2002}\)lớn hơn \(\frac{2004}{2003}\).

5 tháng 9 2019

2004.2003=412008

2003.2003= 412009

\(\Rightarrow\frac{2004}{2003}< \frac{2003}{2002}\Leftrightarrow x< y.\)

18 tháng 6 2016

a) ta thay 1-2002/2003= 1/2003 va 1-2003/2004=1/2004 

ma 1/2003>1/2004 =>2002/2003<2003/2004

b) ta co -2002/2003<1<2005/2004

18 tháng 6 2016

a.2002/2003<2003/2004

b.-2002/2003<2005/-2004

neu dung thi ?

19 tháng 3 2020

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

\(P=\frac{1}{5}-\frac{2}{3}=\frac{3-10}{15}=\frac{-7}{15}\)

11 tháng 10 2020

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

\(=\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)

11 tháng 10 2020

Ta có:

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(P=\frac{1}{5}\cdot\left(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}\right)-\frac{2}{3}\cdot\left(\frac{\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}}{\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}}\right)\)

\(P=\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)

12 tháng 6 2017

ta có 

\(-\frac{2002}{2003}>-1>\frac{2005}{-2004}.\)

\(\Rightarrow-\frac{2002}{2003}>\frac{2005}{-2004}\)

12 tháng 6 2017

\(\frac{2002}{2003}\)>\(\frac{2005}{-2004}\)

22 tháng 9 2023

𝓣𝓪 𝓬𝓸́: \(1-\dfrac{2002}{2003}=\dfrac{1}{2003}\)

            \(1-\dfrac{2003}{2004}=\dfrac{1}{2004}\)  

𝓓𝓸 \(\dfrac{1}{2003}>\dfrac{1}{2004}\) 

𝓷𝓮̂𝓷 \(\dfrac{2002}{2003}>\dfrac{2003}{2004}\)

𝓥𝓪̣̂𝔂 \(\dfrac{2002}{2003}>\dfrac{2003}{2004}\)

23 tháng 9 2023

Ta có :

\(\dfrac{2002}{2003}< \dfrac{2002+1}{2003+1}=\dfrac{2003}{2004}\)

Vậy \(\dfrac{2002}{2003}< \dfrac{2003}{2004}\)

30 tháng 12 2016

Ta có :

\(\frac{-2002}{2003}>-1\)

\(-1>\frac{-2005}{2004}\)

\(\Rightarrow\frac{-2002}{2003}>\frac{-2005}{2004}\)

30 tháng 12 2016

Ta có: 

\(-\frac{2002}{2003}>-1\)

\(-\frac{2005}{2004}< -1\)

=> \(-\frac{2002}{2003}>-\frac{2005}{2004}\)

23 tháng 12 2016

Bài 1:

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(\Rightarrow P=\frac{1\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2002}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

\(\Rightarrow P=\frac{1}{5}-\frac{2}{3}\)

\(\Rightarrow P=\frac{-7}{15}\)

Vậy \(P=\frac{-7}{15}\)

Bài 2:
Ta có: \(S=23+43+63+...+203\)

\(\Rightarrow S=13+10+20+23+...+103+100\)

\(\Rightarrow S=\left(13+23+...+103\right)+\left(10+20+...+100\right)\)

\(\Rightarrow S=3025+450\)

\(\Rightarrow S=3475\)

Vậy S = 3475

23 tháng 12 2016

1. \(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

=> P =\(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

=> P = \(\frac{1}{5}-\frac{2}{3}\)

P = \(\frac{3}{15}-\frac{10}{15}\)

=> P =\(\frac{-7}{15}\)

2. ta có:

S = 23 + 43 + 63 +...+ 203

=> S = 13 + 10 + 23 + 20 +...+ 103 + 100

=> S = ( 13 + 23+...+ 103 ) + ( 10 + 20 +...+ 100 )

=> S = 3025 + 550

=> S = 3575

Vậy S = 3575