Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=1/2.(3/60.63+....+3/117.120)+1/1003
C=1/2.(1/60-1/63+....+1/117-1/120)+1/1003
....còn lại tự làm nha, bài còn lại cũng tương tự
Ta có:
\(C=\dfrac{2}{60.63}+\dfrac{2}{63.66}+...+\dfrac{2}{117.120}+\dfrac{2}{2006}\)
\(C=2\left(\dfrac{1}{60.63}+\dfrac{1}{63.66}+...+\dfrac{1}{117.120}\right)+\dfrac{2}{2006}\)
\(C=2.\dfrac{1}{3}\left(\dfrac{3}{60.63}+\dfrac{3}{63.66}+...+\dfrac{3}{117.120}\right)+\dfrac{2}{2006}\)
\(C=\dfrac{2}{3}\left(\dfrac{1}{60}-\dfrac{1}{63}+\dfrac{1}{63}-\dfrac{1}{66}+...+\dfrac{1}{117}-\dfrac{1}{120}\right)+\dfrac{2}{2006}\)
\(C=\dfrac{2}{3}\left(\dfrac{1}{60}-\dfrac{1}{120}\right)+\dfrac{2}{2006}\)
\(C=\dfrac{2}{3}.\dfrac{1}{120}+\dfrac{2}{2006}\)
\(C=\dfrac{1}{180}+\dfrac{2}{2006}\)
Ta lại có:
\(D=\dfrac{5}{40.44}+\dfrac{5}{44.48}+...+\dfrac{5}{76.80}+\dfrac{5}{2006}\)
\(D=5\left(\dfrac{1}{40.44}+\dfrac{1}{44.48}+...+\dfrac{1}{76.80}\right)+\dfrac{5}{2006}\)
\(D=5.\dfrac{1}{4}\left(\dfrac{4}{40.44}+\dfrac{4}{44.48}+...+\dfrac{4}{76.80}\right)+\dfrac{5}{2006}\)
\(D=\dfrac{5}{4}\left(\dfrac{1}{40}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{48}+...+\dfrac{1}{76}-\dfrac{1}{80}\right)+\dfrac{5}{2006}\)
\(D=\dfrac{5}{4}\left(\dfrac{1}{40}-\dfrac{1}{80}\right)+\dfrac{5}{2006}\)
\(D=\dfrac{5}{4}.\dfrac{1}{80}+\dfrac{5}{2006}\)
\(D=\dfrac{1}{64}+\dfrac{5}{2006}\)
Vì \(\dfrac{1}{180}< \dfrac{1}{64}\)
\(\dfrac{2}{2006}< \dfrac{5}{2006}\)
\(\Rightarrow\dfrac{1}{180}+\dfrac{2}{2006}< \dfrac{1}{64}+\dfrac{5}{2006}\)
\(\Rightarrow C< D\)
dở ẹt nhu cu net ma ko biet lamb tao hoc lop mau giao tao cung biet tra loi dung la ngu
Vì 2003 / 2004 < 1 và 1 < 2006 / 2005 => 2003 / 2004 < 2006 / 2005
Trả lời:
Vì \(\frac{2003}{2004}< 1;1< \frac{2006}{2005}\)
\(\Rightarrow\frac{2003}{2004}< \frac{2006}{2005}\)
Vậy \(\frac{2003}{2004}< \frac{2006}{2005}\)
ta cs: \(\frac{a+2006}{a-2006}=\frac{b+2005}{b-2005}\)
\(\Rightarrow\frac{a+2006}{b+2005}=\frac{a-2006}{b-2005}=\frac{a}{b}=\frac{2006}{2005}\)
=> dpcm
\(2005a=\frac{2005^{2006}+2005}{2005^{2006}+1}=\frac{2005^{2006}+1}{2005^{2006}+1}+\frac{2004}{2005^{2006}+1}=1+\frac{2004}{2005^{2006}+1}\)
\(2005b=\frac{2005^{2005}+2005}{2005^{2005}+1}=\frac{2005^{2005}+1}{2005^{2005}+1}+\frac{2004}{2005^{2005}+1}=1+\frac{2004}{2005^{2005}+1}\)
Ta thấy :\(2005^{2006}+1>2005^{2005}+1\)
\(\Rightarrow\frac{2004}{2005^{2006}+1}< \frac{2004}{2005^{2005}+1}\)
\(\Rightarrow1+\frac{2004}{2005^{2006}+1}< 1+\frac{2004}{2005^{2005}+1}\)
\(\Rightarrow2005a< 2005b\)
\(\Rightarrow a< b\)
\(\frac{4}{-9}=-\frac{4}{9}\)
\(\frac{8}{-13}=-\frac{8}{13}\)
MC=117
Quy đồng:
\(-\frac{4}{9}=-\frac{52}{117}\)
\(-\frac{8}{13}=-\frac{72}{117}\)
=>Vì -52>-72, nên \(-\frac{52}{117}>-\frac{72}{117}\)hay \(\frac{4}{-9}>\frac{8}{-13}\)
Ta có:\(\frac{-1000}{999}\)<-1
\(\frac{-2005}{2006}\)<0
Vì -1<0 nên \(\frac{-1000}{999}\)<\(\frac{-2005}{2006}\)
Chúc bạn học tốt!