Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}\)
\(=\left(1-\frac{1}{2007}\right)+\left(1-\frac{1}{2008}\right)+\left(1-\frac{1}{2009}\right)+\left(1+\frac{3}{2006}\right)\)
\(=\left(1+1+1+1\right)-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)+\frac{3}{2006}\)
\(< 4-\left(\frac{1}{2006}+\frac{1}{2006}+\frac{1}{2006}\right)+\frac{3}{2006}\)
\(=4-\frac{3}{2006}+\frac{3}{2006}\)
\(=4\)
\(\Rightarrow\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}< 4\)
Ta có:4=1+1+1+1=\(\frac{2009}{2009}+\frac{2010}{2010}+\frac{2011}{2011}+\frac{2008}{2008}\)
\(\frac{2008}{2009}+\frac{1}{2009}+\frac{2009}{2010}+\frac{1}{2010}+\frac{2010}{2011}+\frac{1}{2011}+\frac{2008}{2008}\)
Xét \(A=\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2008}\)
\(=\frac{2009}{2009}+\frac{2010}{2010}+\frac{2011}{2011}+\frac{2008}{2008}+\frac{1}{2008}+\frac{1}{2008}+\frac{1}{2008}\)
xét \(\frac{1}{2009}< \frac{1}{2008};\frac{1}{2010}< \frac{1}{2008};\frac{1}{2011}< \frac{1}{2008}\)
\(\Rightarrow4< A\)
Ta có :
\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Vì :
\(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
Nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(\Rightarrow\)\(A>B\)
Vậy \(A>B\)
Ta có: \(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Vì \(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008+2009+2010}{2009+2010+2011}\)
hay A > B
Vậy A > B
mik làm câu A thôi nha
ta có :
1 - 2009/2010 = 1/2010
1 - 2010/2011 = 1/2011
Phần bù nào bé thì phân số đó lớn .
Vì 1/2010 > 1/2011
Nên 2009/2010 > 2010/2011
Ta thấy hiệu giữa mẫu số và tử số của hai phân số bằng nhau ( = 1 )
Để so sánh hai phân số, ta so sánh các hiệu.
\(1-\frac{2009}{2010}\)và \(1-\frac{2010}{2011}\)
Ta có :
\(1-\frac{2009}{2010}=\frac{2010}{2010}-\frac{2009}{2010}=\frac{1}{2010}\)
\(1-\frac{2010}{2011}=\frac{2011}{2011}-\frac{2010}{2011}=\frac{1}{2011}\)
Ta thấy :
\(\frac{1}{2010}>\frac{1}{2011}\)
Hay :
\(1-\frac{2009}{2010}>1-\frac{2010}{2011}\)
Vậy \(\frac{2009}{2010}< \frac{2010}{2011}\)
\(B=\dfrac{2008+2009+2010}{2009+2010+2011}=\dfrac{2008}{2009+2010+2011}+\dfrac{2009}{2009+2010+2011}+\dfrac{2010}{2009+2010+2011}\)Ta có : \(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)
\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)
\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)\(=>\dfrac{2008}{2009}+\dfrac{2009}{2010}+\dfrac{2010}{2011}>\dfrac{2008+2009+2010}{2009+2010+2011}\)
Hay A > B
ta có A = 2008^2009+2 / 2008^2009-1 = 2008^2009-1+3 / 2008^2009-1 = 1 + 3/2008^2009-1
lại có B = 2008^2009 / 2008^2009-3 = 2008^2009-3+3 / 2008^2009-3 = 1 + 3/2008^2009-3
vì 3/2008^2009-1 < 3/2008^2009-3 => 1 + 3/2008^2009-1 < 1 + 3/2008^2009-3
Hay A<B
Vậy A<B
^-^