Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{27}>\sqrt{25}=5.\)
\(\sqrt{26}>\sqrt{25}=5.\)
\(\sqrt{27}+\sqrt{26}+1>5+5+1=11.\)
\(\sqrt{99}< \sqrt{100}=10\)
\(\sqrt{27}+\sqrt{26}+1>\sqrt{99}\)
ta có : \(\sqrt{27}+\sqrt{26}+1\approx11,29\)
\(\sqrt{99}\approx9,94\)
\(\Rightarrow\sqrt{27}+\sqrt{26}+1>\sqrt{99}\)
\(\sqrt{37}>6\)
\(-\sqrt{14}>-\sqrt{15}\)
=> \(\sqrt{37}-\sqrt{14}>6-\sqrt{15}\)
a) Ta có:
\(2=1+1=1+\sqrt{1}\)
Mà: \(1< 2\Rightarrow\sqrt{1}< \sqrt{2}\)
\(\Rightarrow1+\sqrt{1}< \sqrt{2}+1\)
\(\Rightarrow2< \sqrt{2}+1\)
b) Ta có:
\(1=2-1=\sqrt{4}-1\)
Mà: \(4>3\Rightarrow\sqrt{4}>\sqrt{3}\)
\(\Rightarrow\sqrt{4}-1>\sqrt{3}-1\)
\(\Rightarrow1>\sqrt{3}-1\)
c) Ta có:
\(10=2\cdot5=2\sqrt{25}\)
Mà: \(25< 31\Rightarrow\sqrt{25}< \sqrt{31}\)
\(\Rightarrow2\sqrt{25}< 2\sqrt{31}\)
\(\Rightarrow10< 2\sqrt{31}\)
d) Ta có:
\(-12=-3\cdot4=-3\sqrt{16}\)
Mà: \(16>11\Rightarrow\sqrt{16}>\sqrt{11}\)
\(\Rightarrow-3\sqrt{16}< -3\sqrt{11}\)
\(\Rightarrow-12< -3\sqrt{11}\)
Lời giải:
\(\frac{1}{\sqrt{7}}+\frac{1}{\sqrt{11}}> \frac{1}{\sqrt{4}}+\frac{1}{\sqrt{9}}=\frac{5}{6}>\frac{4}{6}=\frac{2}{3}\)
Giả sử
\(\frac{23-2\sqrt{19}}{3}< \sqrt{27}\)
\(\Leftrightarrow23-2\sqrt{29}< 3\sqrt{27}\)
\(\Leftrightarrow23< 3\sqrt{27}+2\sqrt{19}\)
Ta có
\(3\sqrt{27}+2\sqrt{19}>3\sqrt{25}+2\sqrt{16}=23\)
Vậy giả sử là đúng
a: \(1< \sqrt{2}\)
nên \(2< \sqrt{2}+1\)
b: \(2\sqrt{31}=\sqrt{124}\)
\(10=\sqrt{100}\)
mà 124>100
nên \(2\sqrt{31}>10\)
c: \(-3\sqrt{11}=-\sqrt{99}\)
\(-\sqrt{12}=-\sqrt{12}\)
mà 99>12
nên \(-3\sqrt{11}< -\sqrt{12}\)