Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a Ta có : 12534 = 125 .125 . 125 ... .125 (34 thừa số 125) <=> 125.`125.125 = ...5
Vì 34 : 3 = 11 dư 1
nên 12534 = 11 nhóm tận cùng là 5 và dư 1 thưà số 125
= .....5 x125 =...5
Ta có : 12635 = 126 .126 . 126 ... .126 (34 thừa số 126) <=> 126.`126.126 = ...6
Vì 35 : 3 = 11 dư 1
nên 12635 = 11 nhóm tận cùng là 5 và dư 1 thưà số 126
= .....6 x126 =...6
=> Tích 12534 .12635 = tận cùng là ..6 x ...5 = ...0
b Ta có : 20072006 = 2007 .2007 . 2007 ... .2007 ( 2006 thừa số 2007) <=> 2007.`2007.2007 = ...3
Vì 2006 : 3 = 668 dư 2
nên 20172016 = 668 nhóm tận cùng là 3 và dư 2 thưà số 2017
= .....3 . 2007.2007 =..7
Ta có : 20062007 = 2006 .2006 . 2006 ... .2006 ( 2007 thừa số 2006) <=> 2006.`2006.2006 = ...6
Vì 2007 : 3 = 669
nên 20172016 = 669 nhóm tận cùng là 6
= .....6
=> Tích 20062007 .20072006 = tận cùng là ..6 x ...7= ...2
c)
c Ta có : 19981998 = 1998 .1998 . 1998 ... .1998 ( 1998 thừa số 1998) <=> 1998.`1998.1998 = ...2
Vì 1998 : 3 = 666
nên 19981998 = 666 nhóm tận cùng là 2
= .....2
Ta có : 19991999 = 1999 .1999 . 1999 ... .1999 ( 1999 thừa số 1999) <=> 1999.`1999.1999 = ..9
Vì 1999 : 3 = 666 dư 1
nên 19991999 = 666 nhóm tận cùng là 6 dư 1 thừa số 1999
= .....9 . 1999 = ...1
=> Tích 19991999 .19981998 = tận cùng là ..2 . ...1 = ....2
a ) − 1 < 1 ; b ) 9 15 > 7 15 ; c ) − 1 2 > − 7 12 ; d ) 71 20 < 4
\(\frac{2015^{35}+1}{2015^{34}+1}=\frac{2015^{35}+2015-2014}{2015^{34}+1}=\frac{2015\left(2015^{34}+1\right)-2014}{2015^{34}+1}=\frac{2015\left(2015^{34}+1\right)}{2015^{34}+1}-\frac{2014}{2015^{34}+1}=2015-\frac{2014}{2015^{34}+1}\)
\(\frac{2015^{34}+1}{2015^{33}+1}=\frac{2015^{34}+2015-2014}{2015^{33}+1}=\frac{2015\left(2015^{33}+1\right)-2014}{2015^{33}+1}=\frac{2015\left(2015^{33}+1\right)}{2015^{33}+1}-\frac{2014}{2015^{33}+1}=2015-\frac{2014}{2015^{33}+1}\)
Mà \(2015-\frac{2014}{2015^{34}+1}>2015-\frac{2014}{2015^{33}+1}\)
Vậy\(\frac{2015^{35}+1}{2015^{34}+1}>\frac{2015^{34}+1}{2015^{33}+1}\)
ta có: \(\frac{31+32+35}{34}=\frac{31}{34}+\frac{32}{34}+\frac{35}{34}.\)
mà \(\frac{31}{32}>\frac{31}{34};\frac{32}{33}>\frac{32}{34}\)
\(\Rightarrow\frac{31}{32}+\frac{32}{33}+\frac{35}{34}>\frac{31}{34}+\frac{32}{34}+\frac{35}{34}=\frac{31+32+35}{34}\)
Ta có: \(\dfrac{1}{4}=\dfrac{10}{40}=\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}\)
Mà \(\dfrac{1}{31}>\dfrac{1}{40}\)
\(\dfrac{1}{32}>\dfrac{1}{40}\)
\(\dfrac{1}{33}>\dfrac{1}{40}\)
\(\dfrac{1}{34}>\dfrac{1}{40}\)
\(\dfrac{1}{35}>\dfrac{1}{40}\)
\(\dfrac{1}{36}>\dfrac{1}{40}\)
\(\dfrac{1}{37}>\dfrac{1}{40}\)
\(\dfrac{1}{38}>\dfrac{1}{40}\)
\(\dfrac{1}{39}>\dfrac{1}{40}\)
\(\Rightarrow\) \(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{39}+\dfrac{1}{40}>\dfrac{10}{40}=\dfrac{1}{4}\)
Vậy \(S>\dfrac{1}{4}\)