Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Cách 1:
\(\dfrac{17}{80}=0,2125; \dfrac{611}{125}=4,888; \dfrac{133}{91}=1,(461538); \dfrac{9}{8}=1,125\)
Như vậy, trong những phân số trên, phân số không viết được dưới dạng số thập phân hữu hạn là: \(\dfrac{133}{91}\)
Cách 2: Vì các phân số trên đều tối giản và có mẫu dương
Ta có: \(80=2^4.5; 125=5^3; 91=7.13; 8=2^3\) nên chỉ có 91 có ước nguyên tố khác 2,5 nên \(\dfrac{133}{91}\) không viết được dưới dạng số thập phân hữu hạn
b) Ta có: \(\dfrac{133}{91} = 1,(461538) = 1,461538461538…..\)
Quan sát các chữ số ở các hàng tương ứng từ trái sang phải, vì 1= 1; 4 = 4; 1 < 6 nên 1,414213562...< 1,461538461538…..
Vậy \(\dfrac{133}{91}>\sqrt{2}\)
a: \(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)
\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)
a,
Ta có:
\(\dfrac{3}{7}=1-\dfrac{4}{7}\)
\(\dfrac{11}{15}=1-\dfrac{4}{15}\)
So sánh phân số \(\dfrac{4}{7}\) và \(\dfrac{4}{15}\)
Vì \(7< 15\) nên \(\dfrac{1}{7}>\dfrac{1}{15}\)
\(\Rightarrow1-\dfrac{4}{7}< 1-\dfrac{4}{15}\)
Vậy \(\dfrac{3}{7}< \dfrac{11}{15}\)
b)
\(\dfrac{-11}{6}< -1< \dfrac{-8}{9}\) nên \(\dfrac{-11}{6}< \dfrac{-8}{9}\)
c)
\(\dfrac{305}{25}=\dfrac{305:5}{25:5}=\dfrac{61}{5}\)
Ta có:
Mẫu số chung 2 phân số: 80
\(\dfrac{297}{16}=\dfrac{297*5}{16*5}=\dfrac{1485}{80}\)
\(\dfrac{61}{5}=\dfrac{61*16}{5*16}=\dfrac{976}{80}\)
Vì \(1485>976\) nên\(\dfrac{1485}{80}>\dfrac{976}{80}\)
Vậy \(\dfrac{297}{16}>\dfrac{305}{25}\)
d,
$\frac{-205}{317}=\frac{-205:-1}{317:-1}=\frac{205}{-317}$
Ta có:
Mẫu số chung 2 phân số: -35187
\(\dfrac{205}{-317}=\dfrac{205*111}{-317*111}=\dfrac{22755}{-35187}\)
\(\dfrac{-83}{111}=\dfrac{-83*-317}{111*-317}=\dfrac{26311}{-35187}\)
Vì \(22755< 26311\) nên\(\dfrac{22755}{-35187}< \dfrac{26311}{-35187}\)
Vậy \(\dfrac{-205}{317}< \dfrac{-83}{111}\)
Câu d, mình làm sai, cho mình sửa lại:
\(\dfrac{-205}{317}=\dfrac{-22755}{35187}\)
\(\dfrac{-83}{111}=\dfrac{-26311}{35187}\)
Vậy là \(-22755>-26311\) hay \(\dfrac{-205}{317}>\dfrac{-83}{111}\)
\(a,\dfrac{1997}{1996}>1>\dfrac{1996}{1997}\\ b,\dfrac{3}{5}< 1< \dfrac{15}{13}\)
a) \(=\left(13\dfrac{2}{7}+2\dfrac{5}{7}\right):\left(-\dfrac{8}{9}\right)\)
\(=16:\dfrac{-8}{9}=\dfrac{-8\cdot\left(-2\right)\cdot9}{-8}=-18\)
b)
\(=\left(\dfrac{-6}{11}\cdot\dfrac{11}{-6}\right)\cdot\dfrac{7\cdot10\cdot\left(-2\right)}{10}\)
\(=-14\)
c) \(=\dfrac{-1}{2}\cdot\dfrac{4}{3}\cdot\dfrac{-7}{2}\)
\(=\dfrac{-1\cdot2\cdot2\cdot\left(-7\right)}{2\cdot3\cdot2}=\dfrac{7}{3}\)
Bạn tính hai vế à.!? Hay tính vế thứ nhất rồi với vế thứ 2.!???
Bài 3 :
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)
\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)
\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)
\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)
.....
\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)
\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
Vì khi phân tích mẫu ra thừa số nguyên tố, trong đó có thừa số khác 2 và 5 nên cả bốn phân số này viết được dưới dạng số thập phân vô hạn tuần hoàn
\(\left\{{}\begin{matrix}1-\dfrac{2}{3}=\dfrac{1}{3}\\1-\dfrac{3}{4}=\dfrac{1}{4}\\1-\dfrac{4}{5}=\dfrac{1}{5}\\1-\dfrac{9}{10}=\dfrac{1}{10}\end{matrix}\right.\)
Vì:
\(\dfrac{1}{3}>\dfrac{1}{4}>\dfrac{1}{5}>...>\dfrac{1}{10}\)
nên:
\(\dfrac{2}{3}< \dfrac{3}{4}< \dfrac{4}{5}< ...< \dfrac{9}{10}\)
a)
Ta có:
\(\)\(\left\{{}\begin{matrix}\dfrac{3}{4}=\dfrac{2+1}{3+1}\\\dfrac{4}{5}=\dfrac{3+1}{4+1}\\\dfrac{5}{6}=\dfrac{4+1}{5+1}\\\dfrac{9}{10}=\dfrac{8+1}{9+1}\end{matrix}\right.\)
Suy ra quy luật:
Phân số tiếp theo chính là tử của p/s ban đầu +1/mẫu của p/s ban đầu +1
Vậy phân số sau phân số \(\dfrac{a}{b}\) là \(\dfrac{a+1}{b+1}\)
So sánh :
\(\dfrac{a}{b}\) và \(\dfrac{a+1}{b+1}\)
\(\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\)
\(\dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\)
Vậy cần so sánh:
\(\dfrac{ab+a}{b^2+b}\) với \(\dfrac{ab+b}{b^2+b}\)
Cần so sánh:
\(ab+a\) và \(ab+b\)
Cần so sánh \(a\) với \(b\)
Nếu \(a>b\Rightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\)
Nếu \(a< b\Rightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)
Nếu \(a=b\) \(\Rightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}=1\)
Còn cách khác ngắn hơn nhưng lười làm lắm :v
sao ko làm cách ngắn ngay từ đầu :(