K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2016

a)\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}>1024^9\)

b) \(9^{12}=\left(3^2\right)^{12}=3^{24}\) và \(27^7=\left(3^3\right)^7=3^{21}\)

=> \(9^{12}>27^7\)

15 tháng 6 2016

a, 1024 mũ 9 = 2 mũ 10 .9 = 2 mũ 90 < 2 mũ 100

b,  27 mũ 7 = 3 mũ 3.7 =3 mũ 21 < 3 mũ 24 = 3 mũ 2.12 = 9 mũ 12

c,2 mũ 161 > 2 mũ 160 = 2 mũ 4.40 = 16 mũ 40 > 13 mũ 40

1 tháng 8 2023

Bài 4:

\(a,2^{30}=\left(2^3\right)^{10}=8^{10};3^{20}=\left(3^2\right)^{10}=9^{10}\\ Vì:8^{10}< 9^{10}\left(Vì:8< 9\right)\Rightarrow2^{30}< 3^{20}\\ b,9^{10}.27^5=\left(3^2\right)^{10}.\left(3^3\right)^5=3^{20}.3^{15}=3^{35}\\ 243^7=\left(3^5\right)^7=3^{35}\\ Vì:3^{35}=3^{35}\Rightarrow243^7=9^{10}.27^5\)

1 tháng 8 2023

Bài 5:

100< 52x-3 < 59

Đề vầy hả em?

 

b: \(2^{27}=8^9\)

\(3^{18}=9^9\)

4 tháng 12 2015

2156=24*39=(24)39=1639

Vì 18>16 nên 1839>1639 hay 1839>2156

6 tháng 11 2021

giúp mình nhé

b: \(2^{27}=8^9\)

\(3^{18}=9^9\)

mà 8<9

nên \(2^{27}< 3^{18}\)

+)\(8^2=\left(2^3\right)^2=2^6\)

+)\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)

\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)

Vì \(9>8\Rightarrow9^{100}>8^{100}\)hay \(3^{200}>2^{300}\)

+)\(9^{20}=\left(3^2\right)^{20}=3^{40}\)

\(27^{13}=\left(3^3\right)^{13}=3^{39}\)

Vì \(40>39\Rightarrow3^{40}>3^{39}\)hay \(9^{20}>27^{13}\)

+)\(10^{20}=10^{2.10}=\left(10^2\right)^{10}=100^{10}\)

\(2^{100}=2^{10.10}=\left(2^{10}\right)^{10}=1024^{10}\)

Vì \(100< 1024\Rightarrow100^{10}< 1024^{10}\)hay \(10^{20}< 2^{100}\)

+)\(2^{161}=2^{4.40+1}=\left(2^4\right)^{40}.2=16^{40}.2\)

Vì \(13< 16\Rightarrow13^{40}< 16^{40}\)\(\Rightarrow13^{40}< 2^{161}\)

13 tháng 7 2015

b)2^300=(2^3)^100=8^100

  3^200=(3^2)^100=9^100

vi 8<9nen 2^300<3^200

Ta có \(3^{21}=\left(3^3\right)^7=27^7\)

\(2^{31}=2147483648\)

Mà \(27>2_{ }\)\(\Rightarrow3^{21}>2^{31}\)

c)

\(32^9>18^{13}\)(chứng minh tương tự) 

16 tháng 8 2018

So sánh các lũy thừa sau : 

a) 3^21 và 2^21 

Vì 3^21 > 2^21 =>  3^21 > 2^21 

Vậy  3^21 > 2^21 

b) 2^300 và 3^200

2^300 = ( 2^3)^100 = 8^100 

3^200 = (3^2)^100 = 9^100

Vì 8^100 < 9^100 => 2^300 < 3^200 

Vậy 2^300 < 3^200