Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\sqrt{16}-\sqrt{4}=4-2=2\)
mà \(\sqrt{16}>\sqrt{11};\sqrt{4}>\sqrt{3}\) nên \(\sqrt{16}-\sqrt{4}>\sqrt{11}-\sqrt{3}hay\sqrt{11}-\sqrt{3}< 2\)
ta có :
\(\left(\sqrt{11}-\sqrt{3}\right)^2=8-2\sqrt{33}\)
\(2^2=4\)
Do \(4>8-2\sqrt{33}\)
\(\Rightarrow2>\sqrt{11}-\sqrt{3}\)
1/ Điều kiện xác định \(x\ge0\)
\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)
\(\Leftrightarrow\left(\frac{\sqrt{x}}{2}-\frac{\sqrt{x}}{3}-\sqrt{x}\right)=\frac{1}{2}+\frac{2}{3}-1\)
\(\Leftrightarrow-\frac{5}{6}\sqrt{x}=\frac{1}{6}\Leftrightarrow\sqrt{x}=-\frac{1}{5}\) (vô lí)
Vậy pt vô nghiệm
2/ \(x-\left(\sqrt{x}-4\right)\left(\sqrt{x}-5\right)=-38\)
\(\Leftrightarrow x-\left(x-9\sqrt{x}+20\right)+38=0\)
\(\Leftrightarrow9\sqrt{x}=-18\Leftrightarrow\sqrt{x}=-2\) (vô lí)
Vậy pt vô nghiệm.
1)\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)
Đặt \(a=\sqrt{x}-1\) ta đc:
\(\frac{a}{2}-\frac{a+3}{3}=a\)\(\Leftrightarrow\frac{a-6}{6}=a\)
\(\Leftrightarrow a-6=6a\)\(\Leftrightarrow a=-\frac{6}{5}\)
\(\Leftrightarrow\sqrt{x}-1=-\frac{6}{5}\)
\(\Leftrightarrow\sqrt{x}=-\frac{1}{5}\)
=>vô nghiệm (vì \(\sqrt{x}\ge0>-\frac{1}{5}\))
Sử dụng bảng căn bậc hai, thử lại các kết quả bằng cách tra bảng căn bậc hai cho các kết quả vừa tìm được.
\(a=\dfrac{4\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}}{2}\)
\(=2\sqrt{\sqrt{5}-\sqrt{5}+1}=2\)
\(P=\left(2^5-7\cdot2^2-3\right)^{81}+19=1+19=20\)
Có: A= \(\sqrt[3]{ax^2+by^2+cz^2}\) = \(\sqrt[3]{\frac{ax^3}{x}+\frac{by^3}{y}+\frac{cz^3}{z}}\) = \(\sqrt[3]{ax^3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\)
= \(\sqrt[3]{ax^3}\) = \(\sqrt[3]{a}x\) =>\(\sqrt[3]{a}\) =\(\frac{A}{x}\)
Tương tự : \(\sqrt[3]{b}=\frac{A}{y}\) , \(\sqrt[3]{c}=\frac{A}{z}\)
=> \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\) = \(\frac{A}{x}+\frac{A}{y}+\frac{A}{z}\) = A \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) = A
hay \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\) = \(\sqrt[3]{ax^2+by^2+cz^2}\)
Có: \(\frac{P}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\right)\)
\(=\frac{3+\sqrt{5}}{\sqrt{20}+\sqrt{6+2\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{20}+\sqrt{6-2\sqrt{5}}}\)
\(=\frac{3+\sqrt{5}}{\sqrt{20}+\sqrt{\left(\sqrt{5}+1\right)^2}}-\frac{3-\sqrt{5}}{\sqrt{20}+\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\frac{3+\sqrt{5}}{2\sqrt{5}+\sqrt{5}+1}-\frac{3-\sqrt{5}}{2\sqrt{5}+\sqrt{5}-1}\)
\(=\frac{3+\sqrt{5}}{3\sqrt{5}+1}-\frac{3-\sqrt{5}}{3\sqrt{5}-1}\)
\(=\frac{\left(3+\sqrt{5}\right)\left(3\sqrt{5}-1\right)-\left(3-\sqrt{5}\right)\left(3\sqrt{5}+1\right)}{\left(3\sqrt{5}+1\right)\left(3\sqrt{5}-1\right)}\)
\(=\frac{9\sqrt{5}-3+15-\sqrt{5}-9\sqrt{5}-3+15+\sqrt{5}}{9\cdot5-1}\)
\(=\frac{24}{44}=\frac{6}{11}\)
=>P=\(\frac{6}{11}\cdot\sqrt{2}=\frac{6\sqrt{2}}{11}\)
Chính xác 100% mink thử bằng máy tính r
mink làm hơi tắt phần nào k hiểu hói mink nhé
1/\(\sqrt{24-x^2}-\sqrt{8-x^2}=2\)
\(\Rightarrow2A=\left(\sqrt{24-x^2}+\sqrt{8-x^2}\right)\left(\sqrt{24-x^2}-\sqrt{8-x^2}\right)\)
\(\Leftrightarrow2A=16\Rightarrow A=8\)
2/ ĐKXĐ : \(x\ge5\)
\(\sqrt{x-2}+\sqrt{x-5}=\sqrt{x+3}\)
\(\Rightarrow\left(\sqrt{x-2}+\sqrt{x-5}\right)^2=x+3\)
\(\Leftrightarrow2x+2\sqrt{x-2}.\sqrt{x-5}-7=x+3\)
\(\Rightarrow2\sqrt{x-2}.\sqrt{x-5}=10-x\)
\(\Leftrightarrow4\left(x-2\right)\left(x-5\right)=x^2-20x+100\)
\(\Leftrightarrow3x^2-8x-60=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-\frac{10}{3}\end{cases}}\)
Vì \(x\ge5\) nên x = 6 thỏa mãn đề bài.
ta có