\(\frac{2}{60.63}+\frac{2}{63.66}+...+\frac{2}{117.120}+\frac{2}{2003}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2019

\(A=\frac{2}{60\cdot63}+\frac{2}{63\cdot66}+...+\frac{2}{117\cdot120}+\frac{2}{2003}\)

\(\text{Đặt }C=\frac{2}{60\cdot63}+\frac{2}{63\cdot66}+...+\frac{2}{117\cdot120}\)

\(C=\frac{2}{3}\left(\frac{3}{60\cdot63}+\frac{3}{63\cdot66}+...+\frac{3}{117\cdot120}\right)\)

\(C=\frac{2}{3}\left(\frac{1}{60}-\frac{1}{63}+\frac{1}{63}-\frac{1}{66}+...+\frac{1}{117}-\frac{1}{120}\right)\)

\(C=\frac{2}{3}\left(\frac{1}{60}-\frac{1}{120}\right)\)

\(C=\frac{2}{3}\cdot\frac{1}{120}\)

\(C=\frac{1}{180}\)

\(\text{Thay }C=\frac{1}{180}\text{Ta có : }\) \(A=\frac{1}{180}+\frac{2}{2003}\)

\(B=\frac{5}{40\cdot44}+\frac{5}{44\cdot48}+...+\frac{5}{76\cdot80}+\frac{5}{2003}\)

\(\text{Đặt }D=\frac{5}{40\cdot44}+\frac{5}{44\cdot48}+...+\frac{5}{76\cdot80}\)

\(D=\frac{5}{4}\left(\frac{4}{40\cdot44}+\frac{4}{44\cdot48}+...+\frac{4}{76\cdot80}\right)\)

\(D=\frac{5}{4}\left(\frac{1}{40}-\frac{1}{44}+\frac{1}{44}-\frac{1}{48}+...+\frac{1}{76}-\frac{1}{80}\right)\)

\(D=\frac{5}{4}\left(\frac{1}{40}-\frac{1}{80}\right)\)

\(D=\frac{5}{4}\cdot\frac{1}{80}\)

\(D=\frac{1}{64}\)

\(\text{Thay }D=\frac{1}{64}\text{ Ta có : }B=\frac{1}{64}+\frac{5}{2003}\)

\(\text{Vì }A=\frac{1}{180}+\frac{2}{2003}\text{ , }B=\frac{1}{64}+\frac{5}{2003}\)

\(\text{Có : }\frac{1}{180}< \frac{1}{64}\)

\(\frac{2}{2003}< \frac{5}{2003}\)

\(\Rightarrow\text{ }A< B\)

14 tháng 7 2018

A=2/3.(3/60.63+3/63.66+.....+3/117.120+3/120.123)

A=2/3.(1/60-1/63+1/63-1/66+...+1/117-1/120+1/20-1/123)

A=2/3.(1/60-1/123)

21 tháng 7 2018

C=1/2.(3/60.63+....+3/117.120)+1/1003

C=1/2.(1/60-1/63+....+1/117-1/120)+1/1003

....còn lại tự làm nha, bài còn lại cũng tương tự

21 tháng 7 2018

Bạn ơi còn \(\frac{5}{2006}\)xử lý sao

21 tháng 7 2018

Ta có:

\(C=\dfrac{2}{60.63}+\dfrac{2}{63.66}+...+\dfrac{2}{117.120}+\dfrac{2}{2006}\)

\(C=2\left(\dfrac{1}{60.63}+\dfrac{1}{63.66}+...+\dfrac{1}{117.120}\right)+\dfrac{2}{2006}\)

\(C=2.\dfrac{1}{3}\left(\dfrac{3}{60.63}+\dfrac{3}{63.66}+...+\dfrac{3}{117.120}\right)+\dfrac{2}{2006}\)

\(C=\dfrac{2}{3}\left(\dfrac{1}{60}-\dfrac{1}{63}+\dfrac{1}{63}-\dfrac{1}{66}+...+\dfrac{1}{117}-\dfrac{1}{120}\right)+\dfrac{2}{2006}\)

\(C=\dfrac{2}{3}\left(\dfrac{1}{60}-\dfrac{1}{120}\right)+\dfrac{2}{2006}\)

\(C=\dfrac{2}{3}.\dfrac{1}{120}+\dfrac{2}{2006}\)

\(C=\dfrac{1}{180}+\dfrac{2}{2006}\)

Ta lại có:

\(D=\dfrac{5}{40.44}+\dfrac{5}{44.48}+...+\dfrac{5}{76.80}+\dfrac{5}{2006}\)

\(D=5\left(\dfrac{1}{40.44}+\dfrac{1}{44.48}+...+\dfrac{1}{76.80}\right)+\dfrac{5}{2006}\)

\(D=5.\dfrac{1}{4}\left(\dfrac{4}{40.44}+\dfrac{4}{44.48}+...+\dfrac{4}{76.80}\right)+\dfrac{5}{2006}\)

\(D=\dfrac{5}{4}\left(\dfrac{1}{40}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{48}+...+\dfrac{1}{76}-\dfrac{1}{80}\right)+\dfrac{5}{2006}\)

\(D=\dfrac{5}{4}\left(\dfrac{1}{40}-\dfrac{1}{80}\right)+\dfrac{5}{2006}\)

\(D=\dfrac{5}{4}.\dfrac{1}{80}+\dfrac{5}{2006}\)

\(D=\dfrac{1}{64}+\dfrac{5}{2006}\)

\(\dfrac{1}{180}< \dfrac{1}{64}\)

\(\dfrac{2}{2006}< \dfrac{5}{2006}\)

\(\Rightarrow\dfrac{1}{180}+\dfrac{2}{2006}< \dfrac{1}{64}+\dfrac{5}{2006}\)

\(\Rightarrow C< D\)

21 tháng 7 2018

dở ẹt nhu cu net ma ko biet lamb tao hoc lop mau giao tao cung biet tra loi dung la nguhehe

28 tháng 3 2016

A= 2x3/3x60x63+2x3/3x63x66+...+2x3/3x117x120+2/2007

=2/3(1/60-1/63+1/63-1/66+...+1/117-1/120)+2/2007

=2/3(1/60-1/120)+2/2007=1/180+2/2007

Lam tuong tu nhu vay vs B. B nhan ca tu va mau cho 4 sua do thu 5/4 ra ngoai. Cuoi cung tinh dk A<B

20 tháng 8 2022

easy

 

17 tháng 2 2017

Ta có: \(A=\frac{2}{60.63}+\frac{2}{63.66}+...+\frac{2}{117.120}+\frac{2}{2003}\)

\(\Rightarrow A=\frac{2}{3}\left(\frac{3}{60.63}+\frac{3}{63.66}+...+\frac{3}{117.120}\right)+\frac{2}{2003}\)

\(\Rightarrow A=\frac{2}{3}\left(\frac{1}{60}-\frac{1}{63}+\frac{1}{63}-\frac{1}{66}+...+\frac{1}{117}-\frac{1}{120}\right)+\frac{2}{2003}\)

\(\Rightarrow A=\frac{2}{3}\left(\frac{1}{60}-\frac{1}{120}\right)+\frac{2}{2003}\)

\(\Rightarrow A=\frac{2}{3}.\frac{1}{120}+\frac{2}{2003}\)

\(\Rightarrow A=\frac{1}{180}+\frac{2}{2003}\)

\(B=\frac{5}{40.44}+\frac{5}{44.48}+...+\frac{5}{76.80}+\frac{5}{2003}\)

\(\Rightarrow B=\frac{5}{4}\left(\frac{4}{40.44}+\frac{4}{44.48}+...+\frac{4}{76.80}\right)+\frac{5}{2003}\)

\(\Rightarrow B=\frac{5}{4}\left(\frac{1}{40}-\frac{1}{44}+\frac{1}{44}-\frac{1}{48}+...+\frac{1}{76}-\frac{1}{80}\right)+\frac{5}{2003}\)

\(\Rightarrow B=\frac{5}{4}\left(\frac{1}{40}-\frac{1}{80}\right)+\frac{5}{2003}\)

\(\Rightarrow B=\frac{5}{4}.\frac{1}{80}+\frac{5}{2003}\)

\(\Rightarrow B=\frac{1}{64}+\frac{5}{2003}\)

\(\left\{\begin{matrix}\frac{1}{64}>\frac{1}{180}\\\frac{5}{2003}>\frac{2}{2003}\end{matrix}\right.\Rightarrow\frac{1}{64}+\frac{5}{2003}>\frac{1}{180}+\frac{2}{2003}\Rightarrow B>A\)

Vậy A < B

19 tháng 3 2020

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

\(P=\frac{1}{5}-\frac{2}{3}=\frac{3-10}{15}=\frac{-7}{15}\)