K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2021

\(a,\dfrac{a}{b}>1\Leftrightarrow a>1\cdot b=b\\ \dfrac{a}{b}< 1\Leftrightarrow a< 1\cdot b=b\\ b,\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\\ \dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\\ \forall a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}\\ \forall a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\\ \forall a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)

\(c,\forall a>b\Leftrightarrow\dfrac{a}{b}-1=\dfrac{a-b}{b}>\dfrac{a-b}{b+n}\left(b< b+n;a-b>0\right)=\dfrac{a+n}{b+n}-1\\ \Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a< b\Leftrightarrow1-\dfrac{a}{b}=\dfrac{b-a}{b}>\dfrac{b-a}{b+n}\left(b< b+n;b-a>0\right)=1-\dfrac{a+n}{b+n}\\ \Leftrightarrow1-\dfrac{a}{b}>1-\dfrac{a+n}{b+n}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a=b\Leftrightarrow\dfrac{a+n}{b+n}=\dfrac{a}{b}\left(=1\right)\)

21 tháng 1 2018

Có : 10A = 10.(10^11-1)/10^12-1 = 10^12-10/10^12-1 

Vì : 0 < 10^12-10 < 10^12-1 => 10A < 1 (1)

10B = 10.(10^10+1)/10^11+1 = 10^11+10/10^11+1

Vì : 10^11+10 > 10^11+1 > 0 => 10B > 1 (2)

Từ (1) và (2) => 10A < 10B

=> A < B

Tk mk nha

21 tháng 1 2018

\(A=\frac{10^{11}-1}{10^{12}-1}\)

\(B=\frac{10^{10}+1}{10^{11}+1}\)

Mà \(\frac{10^{11}-1}{10^{12}-1}< 1\)\(\frac{10^{10}+1}{10^{11}+1}< 1\)

\(\Rightarrow\)\(A,B< 1\)

Ta có:

\(10^{11}-1>10^{10}+1\)\(10^{12}-1>10^{11}+1\)

\(\Rightarrow A>B\)

Vậy A > B

24 tháng 8 2016

1) Áp dụng a/b < 1 <=> a/b < a+n/b+n (a,b,n thuộc N*)

a/b = 1 <=> a/b = a+n/b+n (a,b,n thuộc N*)

a/b > 1 <=> a/b > a+n/b+n (a,b,n thuộc N*)

+ Với a/b < 1 <=> a/b < a+1/b+1

+ Với a/b = 1 <=> a/b = a+1/b+1

+ Với a/b > 1 <=> a/b > a+1/b+1

2) lm tương tự bài 1

24 tháng 8 2016

1) Trường hợp a cũng là nguyên duơng 
Xét a<b và a>b. 
Xét a<b trước, ta có: 
1-a/b=(b-a)/a..............(1) 
1-(a+1)/(b+1)=(b+1-a-1)/(b+1)=(b-a/(b+1... 
Từ (1) và (2) ta thấy: (b-a)/a<(b-a)/(b+1) (vì hai phân số có cùng tử phân số nào mẫu lớn thì phân số đó nhỏ hơn). Mà (b-a)/a>(b-a)/(b+1) =>((a+1)/(b+1)<a/b 

13 tháng 6 2016

Xét hiệu:

\(H=\frac{a}{b}-\frac{a+1}{b+1}=\frac{a\left(b+1\right)-b\left(a+1\right)}{b\left(b+1\right)}=\frac{a-b}{b\left(b+1\right)}.\)

Vì b>0 => b+1>0. Do đó:

  • Nếu a>b thì H>0 hay: \(\frac{a}{b}>\frac{a+1}{b+1}\)
  • Nếu a<b thì H<0 hay: \(\frac{a}{b}< \frac{a+1}{b+1}\)
  • Nếu a=b thì H=0 hay: \(\frac{a}{b}=\frac{a+1}{b+1}\)

\(\frac{a}{b}

29 tháng 8 2015

bằng nhau                               

29 tháng 8 2015

Ta có: \(\frac{a}{b}=\frac{a.\left(b+1\right)}{b.\left(b+1\right)}=\frac{ab+a}{b.\left(b+1\right)}\)

          \(\frac{a+1}{b+1}=\frac{b.\left(a+1\right)}{b.\left(b+1\right)}=\frac{ab+b}{b.\left(b+1\right)}\)

Xét a>b

=>\(\frac{ab+a}{b.\left(b+1\right)}>\frac{ab+b}{b.\left(b+1\right)}\)

=>\(\frac{a}{b}>\frac{a+1}{b+1}\)

Xét a<b

=>\(\frac{ab+a}{b.\left(b+1\right)}