K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2018

a. Ta có \(3\sqrt{3}=\sqrt{27}>\sqrt{12}\)

Vậy \(3\sqrt{3}>\sqrt{12}\)

b. Ta có \(7=\sqrt{49}\), \(3\sqrt{5}=\sqrt{45}\)

\(\sqrt{49}>\sqrt{45}\)nên \(7>3\sqrt{5}\)

c. Ta có \(\dfrac{1}{3}\sqrt{51}=\dfrac{\sqrt{51}}{3}\), \(\dfrac{1}{5}\sqrt{150}=\sqrt{6}=\dfrac{3\sqrt{6}}{3}=\dfrac{\sqrt{54}}{3}\)

\(\dfrac{\sqrt{51}}{3}< \dfrac{\sqrt{54}}{3}\) nên \(\dfrac{1}{3}\sqrt{51}< \dfrac{1}{5}\sqrt{150}\)

d. Ta có \(\dfrac{1}{2}\sqrt{6}=\dfrac{\sqrt{6}}{2}\), \(6\sqrt{\dfrac{1}{2}}=3\sqrt{2}=\dfrac{6\sqrt{2}}{2}\)

\(\dfrac{\sqrt{6}}{2}< \dfrac{6\sqrt{2}}{2}\Rightarrow\dfrac{1}{2}\sqrt{6}< 6\sqrt{\dfrac{1}{2}}\)

28 tháng 9 2021

a) \(3\sqrt{3}=\sqrt{27}>\sqrt{12}\)

b) \(3\sqrt{5}=\sqrt{45}>\sqrt{27}\)

c) \(\dfrac{1}{3}\sqrt{51}=\sqrt{\dfrac{51}{9}}< \sqrt{\dfrac{54}{9}}=6=\sqrt{\dfrac{150}{25}}=\dfrac{1}{5}\sqrt{150}\)

d) \(\dfrac{1}{2}\sqrt{6}=\sqrt{\dfrac{6}{4}}=\sqrt{\dfrac{3}{2}}< \sqrt{\dfrac{36}{2}}=6\sqrt{\dfrac{1}{2}}\)

17 tháng 1 2022

đề bài là gì ạ

so sánh hay gì ạ

....

a) Ta có:

\(2\sqrt{3}=\sqrt{2^2.3}=\sqrt{12}.\)

Mà \(\sqrt{12}< \sqrt{13}\)

Nên \(2\sqrt{3}< \sqrt{13}\) 

a: \(4\sqrt{7}=\sqrt{4^2\cdot7}=\sqrt{112}\)

\(3\sqrt{13}=\sqrt{3^2\cdot13}=\sqrt{117}\)

mà 112<117

nên \(4\sqrt{7}< 3\sqrt{13}\)

b: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)

\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)

mà 108>64

nên \(3\sqrt{12}>2\sqrt{16}\)

c: \(\dfrac{1}{4}\sqrt{84}=\sqrt{\dfrac{1}{16}\cdot84}=\sqrt{\dfrac{21}{4}}\)

\(6\sqrt{\dfrac{1}{7}}=\sqrt{36\cdot\dfrac{1}{7}}=\sqrt{\dfrac{36}{7}}\)

mà \(\dfrac{21}{4}>\dfrac{36}{7}\)

nên \(\dfrac{1}{4}\sqrt{84}>6\sqrt{\dfrac{1}{7}}\)

d: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)

\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)

mà 108>64

nên \(3\sqrt{12}>2\sqrt{16}\)

22 tháng 6 2023

a)

Có: 

\(2\sqrt{29}=\sqrt{4.29}=\sqrt{116}\\ 3\sqrt{13}=\sqrt{9.13}=\sqrt{117}\)

Vì \(\sqrt{117}>\sqrt{116}\)  nên \(3\sqrt{13}>2\sqrt{29}\)

b)

Có:

\(\dfrac{5}{4}\sqrt{2}=\sqrt{\dfrac{25}{16}.2}=\sqrt{\dfrac{25}{8}}\)

\(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}=\sqrt{\dfrac{9}{4}.\dfrac{3}{2}}=\sqrt{\dfrac{27}{8}}\)

Do \(\sqrt{\dfrac{27}{8}}>\sqrt{\dfrac{25}{8}}\)  nên \(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}>\dfrac{5}{4}\sqrt{2}\)

c)

Có:

\(5\sqrt{2}=\sqrt{25.2}=\sqrt{50}\)

\(4\sqrt{3}=\sqrt{16.3}=\sqrt{48}\)

Vì \(\sqrt{50}>\sqrt{48}\) nên \(5\sqrt{2}>4\sqrt{3}\)

d)

Có:

\(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}=\sqrt{\dfrac{25}{4}.\dfrac{1}{6}}=\sqrt{\dfrac{25}{24}}\)

\(6\sqrt{\dfrac{1}{37}}=\sqrt{36.\dfrac{1}{37}}=\sqrt{\dfrac{36}{37}}\)

lại có: \(\dfrac{25}{24}>\dfrac{36}{37}\)

 \(\Rightarrow\dfrac{5}{2}\sqrt{\dfrac{1}{6}}>6\sqrt{\dfrac{1}{37}}\)

31 tháng 3 2017

a, \(3\sqrt{3}\) >\(2\sqrt{3}\) =>\(3\sqrt{3}\) >\(\sqrt{12}\)

b,có \(3\sqrt{5}=\sqrt{45}\) <\(\sqrt{49}=7\) =>7 >\(3\sqrt{5}\)

c,\(\sqrt{\dfrac{51}{9}}\) <\(\sqrt{6}\) => \(\dfrac{1}{3}\sqrt{51}\) <\(\dfrac{1}{5}\sqrt{150}\)

d.\(\dfrac{1}{2}\sqrt{6}< 6\sqrt{\dfrac{1}{2}}\)

31 tháng 3 2017

Đưa thừa số vào trong dấu căn rồi so sánh.

a) 3√3 > √12

b) 7 > 3√5

c)

d)

a: \(=\dfrac{2\sqrt{7}-10-6+2\sqrt{7}}{4}+4+2\sqrt{7}-\dfrac{20}{9}+\dfrac{5}{9}\sqrt{7}\)

\(=\sqrt{7}-4+\dfrac{23}{9}\sqrt{7}+\dfrac{16}{9}\)

\(=\dfrac{32}{9}\sqrt{7}-\dfrac{20}{9}\)

b:\(=\dfrac{2\sqrt{6}+4+2\sqrt{6}-4}{2}+\dfrac{5}{6}\sqrt{6}\)

\(=2\sqrt{6}+\dfrac{5}{6}\sqrt{6}=\dfrac{17}{6}\sqrt{6}\)

c: \(=\dfrac{1}{3}\sqrt{3}+\dfrac{1}{6}\sqrt{2}+\dfrac{1}{\sqrt{3}}\cdot\sqrt{\dfrac{5-2\sqrt{6}}{12}}\)

\(=\dfrac{1}{3}\sqrt{3}+\dfrac{1}{6}\sqrt{2}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)

\(=\dfrac{2\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}}{6}=\dfrac{3\sqrt{3}}{6}=\dfrac{\sqrt{3}}{2}\)

 

Câu 1:

a: \(\dfrac{2}{5}\sqrt{75}-0,5\cdot\sqrt{48}+\sqrt{300}-\dfrac{2}{3}\cdot\sqrt{12}\)

\(=\dfrac{2}{5}\cdot5\sqrt{3}-0,5\cdot4\sqrt{3}+10\sqrt{3}-\dfrac{2}{3}\cdot2\sqrt{3}\)

\(=2\sqrt{3}-2\sqrt{3}+10\sqrt{3}-\dfrac{4}{3}\sqrt{3}\)

\(=10\sqrt{3}-\dfrac{4}{3}\sqrt{3}=\dfrac{26}{3}\sqrt{3}\)

b: \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)

\(=\dfrac{\sqrt{3}\cdot3\sqrt{3}-2\sqrt{3}}{\sqrt{2}\left(3\sqrt{3}-2\right)}+\dfrac{3\left(3-\sqrt{6}\right)}{9-6}\)

\(=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}+3-\sqrt{6}\)

\(=\dfrac{\sqrt{3}}{\sqrt{2}}+3-\sqrt{6}=3-\dfrac{\sqrt{6}}{2}\)

c: \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

=\(\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{24-2\cdot2\sqrt{6}\cdot3+9}\)

\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)

\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)

Bài 2:

a: loading...

b: Phương trình hoành độ giao điểm là:

\(3x+2=-x-4\)

=>4x=-6

=>x=-3/2

Thay x=-3/2 vào y=-x-4, ta được:

\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=-\dfrac{5}{2}\)

Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)

c: Vì (d2)//(d) nên \(\left\{{}\begin{matrix}a=-1\\b\ne-4\end{matrix}\right.\)

Vậy: (d2): y=-x+b

Thay x=-2 và y=5 vào (d2), ta được:

\(b-\left(-2\right)=5\)

=>b+2=5

=>b=5-2=3

Vậy: (d2): y=-x+3

a: \(=\left(-\sqrt{5}-\sqrt{7}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)\)

\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

=-2

b: \(=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)

\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}\)

c: \(=\dfrac{\sqrt{10}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}-2-\sqrt{10}+3\sqrt{7}+2\)

\(=\sqrt{10}-\sqrt{10}+3\sqrt{7}=3\sqrt{7}\)