Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(A=\dfrac{2}{3}\left(\dfrac{1}{60}-\dfrac{1}{63}+\dfrac{1}{63}-\dfrac{1}{66}+...+\dfrac{1}{117}-\dfrac{1}{120}\right)+\dfrac{2}{2003}\)
\(=\dfrac{2}{3}\cdot\dfrac{1}{120}+\dfrac{2}{2003}\)
\(=2\left(\dfrac{1}{360}+\dfrac{1}{2003}\right)\)
\(B=\dfrac{5}{4}\left(\dfrac{1}{40}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{48}+...+\dfrac{1}{76}-\dfrac{1}{80}\right)+\dfrac{5}{2003}\)
\(=\dfrac{5}{4}\cdot\dfrac{1}{80}+\dfrac{5}{2003}\)
\(=5\left(\dfrac{1}{320}+\dfrac{1}{2003}\right)\)
Vì 1/360+1/2003<1/320+1/2003
nên A<B
Ta co
+)A=2/60*63+2/63*66+...+2/117*120+2/2003
A*3/2=3/60*63+3/63*66+...+3/117*120+3/2003
A*3/2=1/60-1/63+1/63-1/66+...+1/117-1/120+3/2003
A*3/2=1/60-1/120+3/2003
A=(1/120+3/2003)*2/3
+)B=5/40*44+5/44*48+...+5/76*80+5/2003
B*4/5=4/40*44+4/44*48+...+4/76*80+4/2003
B*4/5=1/40-1/44+1/44-1/48+...+1/76-1/80+4/2003
B*4/5=1/40-1/80+4/2003
B=(1/80+4/2003)*5/4
Tu tren ta co A=(1/120+3/2003)*2/3
B=(1/80+4/2003)*5/4
Vay A<B(Vi 1/120<1/80;3/2003<4/2003;2/3<5/4)
Ta có: \(A=\frac{2}{60.63}+\frac{2}{63.66}+...+\frac{2}{117.120}+\frac{2}{2003}\)
\(\Rightarrow A=\frac{2}{3}\left(\frac{3}{60.63}+\frac{3}{63.66}+...+\frac{3}{117.120}\right)+\frac{2}{2003}\)
\(\Rightarrow A=\frac{2}{3}\left(\frac{1}{60}-\frac{1}{63}+\frac{1}{63}-\frac{1}{66}+...+\frac{1}{117}-\frac{1}{120}\right)+\frac{2}{2003}\)
\(\Rightarrow A=\frac{2}{3}\left(\frac{1}{60}-\frac{1}{120}\right)+\frac{2}{2003}\)
\(\Rightarrow A=\frac{2}{3}.\frac{1}{120}+\frac{2}{2003}\)
\(\Rightarrow A=\frac{1}{180}+\frac{2}{2003}\)
\(B=\frac{5}{40.44}+\frac{5}{44.48}+...+\frac{5}{76.80}+\frac{5}{2003}\)
\(\Rightarrow B=\frac{5}{4}\left(\frac{4}{40.44}+\frac{4}{44.48}+...+\frac{4}{76.80}\right)+\frac{5}{2003}\)
\(\Rightarrow B=\frac{5}{4}\left(\frac{1}{40}-\frac{1}{44}+\frac{1}{44}-\frac{1}{48}+...+\frac{1}{76}-\frac{1}{80}\right)+\frac{5}{2003}\)
\(\Rightarrow B=\frac{5}{4}\left(\frac{1}{40}-\frac{1}{80}\right)+\frac{5}{2003}\)
\(\Rightarrow B=\frac{5}{4}.\frac{1}{80}+\frac{5}{2003}\)
\(\Rightarrow B=\frac{1}{64}+\frac{5}{2003}\)
Vì \(\left\{\begin{matrix}\frac{1}{64}>\frac{1}{180}\\\frac{5}{2003}>\frac{2}{2003}\end{matrix}\right.\Rightarrow\frac{1}{64}+\frac{5}{2003}>\frac{1}{180}+\frac{2}{2003}\Rightarrow B>A\)
Vậy A < B
Bài 1:
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(\Rightarrow P=\frac{1\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2002}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
\(\Rightarrow P=\frac{1}{5}-\frac{2}{3}\)
\(\Rightarrow P=\frac{-7}{15}\)
Vậy \(P=\frac{-7}{15}\)
Bài 2:
Ta có: \(S=23+43+63+...+203\)
\(\Rightarrow S=13+10+20+23+...+103+100\)
\(\Rightarrow S=\left(13+23+...+103\right)+\left(10+20+...+100\right)\)
\(\Rightarrow S=3025+450\)
\(\Rightarrow S=3475\)
Vậy S = 3475
1. \(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
=> P =\(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
=> P = \(\frac{1}{5}-\frac{2}{3}\)
P = \(\frac{3}{15}-\frac{10}{15}\)
=> P =\(\frac{-7}{15}\)
2. ta có:
S = 23 + 43 + 63 +...+ 203
=> S = 13 + 10 + 23 + 20 +...+ 103 + 100
=> S = ( 13 + 23+...+ 103 ) + ( 10 + 20 +...+ 100 )
=> S = 3025 + 550
=> S = 3575
Vậy S = 3575