K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

bạn xem lại đề bài có đúng không nhé. Hình như chỗ -1/4 phải là 1/4 mới đúng

4 tháng 4 2020

=(-3042014/152014+152015/3042015)*(-7/12+4/122+3/12)

=(-3042014/152014+152015/3042015)*0

=0

6 tháng 4 2020

(-3042014\152014+152015\3042015).(-7\12+4\12_-3\12)

=>(-3042014\152014+152015\3042015).0

=>0

Bài 1. (4,5 điểm) Tính: a) 13 7 24 . 2 12 6 5   −   + −   − b) 3042014 152015 7 1 1 152014 3042015 12 3 4    − − −    + + −    c) 1 1 1 1 1 1 1 3 15 35 63 99 143 195 + + + + + + Bài 2. (5,0 điểm) a) Tìm x biết: 3 1 10 4 x − = . b) Tìm số nguyên x sao cho 2x 1 x 1 + − là số nguyên. Bài 3. (6,5 điểm) a) Chứng tỏ tổng abcabc + 22là hợp số. b) Tìm số tự nhiên có ba chữ số, biết...
Đọc tiếp

Bài 1. (4,5 điểm) Tính: a) 13 7 24 . 2 12 6 5   −   + −   − b) 3042014 152015 7 1 1 152014 3042015 12 3 4    − − −    + + −    c) 1 1 1 1 1 1 1 3 15 35 63 99 143 195 + + + + + + Bài 2. (5,0 điểm) a) Tìm x biết: 3 1 10 4 x − = . b) Tìm số nguyên x sao cho 2x 1 x 1 + − là số nguyên. Bài 3. (6,5 điểm) a) Chứng tỏ tổng abcabc + 22là hợp số. b) Tìm số tự nhiên có ba chữ số, biết rằng khi chia số đó cho các số 15; 21; 56 thì được các số dư lần lượt là 3; 9; 44. Bài 4. (4,0 điểm) a) Cho hai góc kề bù xOy và yOz, gọi Om là tia phân giác góc yOz. Vẽ tia On nằm giữa hai tia Ox và Oy sao cho góc mOn có số đo bằng 900 . Chứng tỏ On là tia phân giác góc xOy. b) Cho 23 điểm trong đó có đúng 3 điểm thẳng hàng. Cứ qua hai điểm ta vẽ một đường thẳng. Hỏi có tất cả bao nhiêu đường thẳng trong hình vẽ? Giải thích? 

Bài 3 (2,0 điểm) Cho phân số n + 1 A= (n Z) n - 3 ∈ a) Tìm n để A là phân số. b) Tìm n để A là phân số tối giản. c) Tìm n để A có giá trị lớn nhất. 

giúp vs

0
4 tháng 4 2020

\(\left(\frac{-3042014}{152014}-\frac{152014}{3042014}\right)\left(\frac{7}{12}+\frac{1}{3}-\frac{1}{4}\right)\)

\(=\left(-200,1298189\right)\left(\frac{7}{12}+\frac{4}{12}-\frac{3}{12}\right)\)

\(=\left(-200,1298189\right).\frac{2}{3}\)

\(=-133,4198793\)

chúc bạn học tốt

5 tháng 4 2020

\(\left(\frac{-3042014}{152014}-\frac{152014}{3042014}\right)\left(\frac{-7}{12}+\frac{1}{3}-\frac{-1}{4}\right)\)

\(=\left(\frac{-3042014}{152014}-\frac{152014}{3042014}\right)\left(\frac{-7}{12}+\frac{1}{3}+\frac{1}{4}\right)\)

\(=\left(\frac{-3042014}{152014}-\frac{152014}{3042014}\right)\left(\frac{-7}{12}+\frac{7}{12}\right)\)

\(=\left(\frac{-3042014}{152014}-\frac{152014}{3042014}\right).0=0\)

20 tháng 8 2021

2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

              \(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)

Vậy \(2^{332}< 3^{223}\)

20 tháng 8 2021

1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)

\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)

Nên suy ra \(10A>10B\Rightarrow A>B\)

AH
Akai Haruma
Giáo viên
24 tháng 3 2021

Lời giải:

a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

b) Rõ ràng $10^{11}-1< 10^{12}-1$. 

Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$

Áp dụng kết quả phần a:

$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$

24 tháng 3 2021

Cô ơi cho em hỏi là từ 7h - 9h thứ 2 tuần sau tức ngày 29/3 cô có online không ạ ?

8 tháng 7 2023

A = \(\dfrac{n^9+1}{n^{10}+1}\) 

\(\dfrac{1}{A}\) = \(\dfrac{n^{10}+1}{n^9+1}\) = n -  \(\dfrac{n-1}{n^9+1}\)

B = \(\dfrac{n^8+1}{n^9+1}\)

\(\dfrac{1}{B}\) = \(\dfrac{n^9+1}{n^8+1}\) =  n - \(\dfrac{n-1}{n^8+1}\)

Vì n > 1 ⇒ n - 1> 0

       \(\dfrac{n-1}{n^9+1}\) < \(\dfrac{n-1}{n^8+1}\)

⇒ n - \(\dfrac{n-1}{n^9+1}\) > n - \(\dfrac{n-1}{n^8+1}\)⇒ \(\dfrac{1}{A}>\dfrac{1}{B}\)

⇒ A < B 

 

    

10 tháng 5 2021

a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)

b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)