Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1619 và 825
Ta có :
1619 = ( 24 )19 = 276
825 = ( 23 )25 = 275
Vì 276 > 275 Nên 1619 > 825
b) 536 và 1124
Ta có :
536 = ( 53 )12 = 12512
1124 = ( 112 )12 = 12112
Vì 12512 > 12112 Nên 536 > 1124
1.
\(M=3^0+3^1+......+3^{50}.\)
\(\Rightarrow3M=3+3^2+.......+3^{51}\)
\(\Rightarrow3M-M=\left(3+3^2+.......+3^{51}\right)-\left(3^0+3+.....+3^{50}\right)\)
\(\Rightarrow2M=3^{51}-1\)
\(\Rightarrow M=\frac{3^{51}-1}{2}\)
2.
\(a,\)Ta có : \(16^{19}=\left(2^4\right)^{19}=2^{76}\)
\(8^{25}=\left(2^3\right)^5=2^{75}\)
Vì \(2^{76}>2^{75}\Rightarrow16^{19}>8^{25}\)
\(b,\)Ta có : \(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
Vì \(125^{12}>121^{12}\Rightarrow5^{36}>11^{24}\)
`A=3/4+8/9+.............+9999/10000`
`=1-1/4+1-1/9+,,,,,,,,,,+1-1/10000`
`=99-(1/4+1/9+.........+1/10000)<99-0=99`
`=>A<99`
\(A=2+\frac{3}{4}+\frac{8}{9}+......+\frac{2499}{2500}\)
\(A=2+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+.....+\left(1-\frac{1}{2500}\right)\)
\(A=2+1-\frac{1}{4}+1-\frac{1}{9}+.........+1-\frac{1}{2500}\)
\(A=2+\left(1+1+....+1\right)-\left(\frac{1}{4}+\frac{1}{9}+....+\frac{1}{2500}\right)\)
\(A=2+\left(1+1+....+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{50^2}\right)\)
Vì mỗi số 1 đều đi với 1 phân số nên có số số 1 là: (50-1)/1+1=50(số)
\(A=52-\left(\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{50^2}\right)\)
\(\frac{1}{2^2}<\frac{1}{1\cdot2}\)
\(\frac{1}{3^2}<\frac{1}{2\cdot3}\)
.........
\(\frac{1}{50^2}<\frac{1}{49\cdot50}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{49\cdot50}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}<\frac{1}{1}-\frac{1}{50}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}<\frac{49}{50}\)
\(\Rightarrow52-\left(\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}\right)>52-\frac{49}{50}\)
\(\Rightarrow A>51\frac{1}{50}\)
Vì\(51\frac{1}{50}>50\Rightarrow A>50\)
\(M=\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+...+\dfrac{3}{20.21}\)
\(M=3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{20}-\dfrac{1}{21}\right)\)
\(M=3\left(1-\dfrac{1}{21}\right)\)
\(M=3.\dfrac{20}{21}=\dfrac{20}{7}\)
\(N=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{25}{24}...\dfrac{100}{99}\)
\(N=\dfrac{4.9.16.25...100}{3.8.15.24...99}\)
\(N=\dfrac{2.2.3.3.4.4.5.5...10.10}{1.3.2.4.3.5.4.6...9.11}\)
\(N=\dfrac{2.3.4.5...10}{1.2.3...9}.\dfrac{2.3.4.5...10}{3.4.5...11}\)
\(N=10.\dfrac{2}{11}=\dfrac{20}{11}\)
a) \(M=\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+......+\dfrac{3}{20.21}\)
= \(3.\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+......+\dfrac{1}{20}-\dfrac{1}{21}\right)\)
= \(3.\left(\dfrac{1}{1}-\dfrac{1}{21}\right)\)
= \(3.\dfrac{20}{21}\)
= \(\dfrac{20}{7}\)
b) \(N=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{25}{24}.......\dfrac{100}{99}\)
= \(\dfrac{4.9.16.25.....100}{3.8.15.24.....99}\)
= \(\dfrac{2.2.3.3.4.4.5.5.......10.10}{1.3.2.4.3.5.4.6......9.11}\)
= \(\dfrac{\left(2.3.4.5.....10\right).\left(2.3.4.5.....10\right)}{\left(1.2.3.4......9\right).\left(3.4.5.....11\right)}\)
= \(\dfrac{10.2}{1.11}\)
= \(\dfrac{20}{11}\)
\(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}._{......}.\dfrac{80}{81}.\dfrac{99}{100}\)
\(=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.\dfrac{4.6}{5^2}...\dfrac{8.10}{9^2}.\dfrac{9.11}{10^2}\)
\(=\dfrac{1.2.3.4...8.9}{2.3.4.5...10}.\dfrac{3.4.5.6...11}{2.3.4.5...10}\)
\(=\dfrac{1}{10}.\dfrac{11}{2}\)
\(=\dfrac{11}{20}\)
Ta có:
\(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}....\dfrac{80}{81}.\dfrac{99}{100}\\ =\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.\dfrac{4.6}{5^2}...\dfrac{8.10}{9^2}.\dfrac{9.11}{10^2}\\ =\dfrac{11}{2.10}=\dfrac{11}{20}\)
\(A=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{10^2-1}{10^2}.\)
A là tổng của 9 số hạng; mỗi số hạng đều nhỏ hơn 1 nên A<9*1<50.