K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2019

\(2018\cdot\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019\cdot\left(\frac{1}{2017}-2\right)=\frac{2018}{2017}-4038-\frac{2019}{2017}+4038\)

\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)

19 tháng 3 2019

Đề thi đó

7 tháng 4 2019

Trả lời giúp nha

NV
7 tháng 4 2019

\(A=2^{2019}-2^{2018}-2^{2017}-...-2-1\)

\(A=2^{2019}-\left(2^{2018}+2^{2017}+...+2+1\right)=2^{2019}-B\)

Xét \(B=2^{2018}+2^{2017}+...+2+1\)

\(\Rightarrow2B=2^{2019}+2^{2018}+...+2^2+2\)

\(\Rightarrow2B-2^{2019}+1=2^{2018}+2^{2017}+...+2+1\)

\(\Rightarrow2B-2^{2019}+1=B\)

\(\Rightarrow B=2^{2019}-1\)

\(\Rightarrow A=2^{2019}-B=2^{2019}-\left(2^{2019}-1\right)=2^{2019}-2^{2019}+1=1\)

Vậy \(A=1\)

10 tháng 4 2022

A>B do A>4 cònB<4

13 tháng 7 2023

ngáo đá 😂

NV
1 tháng 4 2019

Ta có:

\(VT=\left|x-2017\right|+\left|2019-x\right|+\left|2018-x\right|\)

\(\Rightarrow VT\ge\left|x-2017+2019-x\right|+\left|2018-x\right|\)

\(\Rightarrow VT\ge2+\left|2018-x\right|\ge2\)

Dấu "=" xảy ra khi và chỉ khi \(x=2018\Rightarrow\) pt có nghiệm duy nhất \(x=2018\)

2 tháng 7 2018

Đặt \(A=\frac{2^{2017}+1}{2^{2018}+1}\Rightarrow2A=\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)

\(B=\frac{2^{2018}+1}{2^{2019}+1}\Rightarrow2B=\frac{2^{2019}+2}{2^{2019}+1}=\frac{2^{2019}+1+1}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)

Vì \(2^{2019}+1>2^{2018}+1\Rightarrow\frac{1}{2^{2019}+1}< \frac{1}{2^{2018}+1}\)

\(\Rightarrow2A>2B\Rightarrow A>B\)