Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^{2019}-2^{2018}-2^{2017}-...-2-1\)
\(A=2^{2019}-\left(2^{2018}+2^{2017}+...+2+1\right)=2^{2019}-B\)
Xét \(B=2^{2018}+2^{2017}+...+2+1\)
\(\Rightarrow2B=2^{2019}+2^{2018}+...+2^2+2\)
\(\Rightarrow2B-2^{2019}+1=2^{2018}+2^{2017}+...+2+1\)
\(\Rightarrow2B-2^{2019}+1=B\)
\(\Rightarrow B=2^{2019}-1\)
\(\Rightarrow A=2^{2019}-B=2^{2019}-\left(2^{2019}-1\right)=2^{2019}-2^{2019}+1=1\)
Vậy \(A=1\)
Ta có:
\(VT=\left|x-2017\right|+\left|2019-x\right|+\left|2018-x\right|\)
\(\Rightarrow VT\ge\left|x-2017+2019-x\right|+\left|2018-x\right|\)
\(\Rightarrow VT\ge2+\left|2018-x\right|\ge2\)
Dấu "=" xảy ra khi và chỉ khi \(x=2018\Rightarrow\) pt có nghiệm duy nhất \(x=2018\)
Đặt \(A=\frac{2^{2017}+1}{2^{2018}+1}\Rightarrow2A=\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)
\(B=\frac{2^{2018}+1}{2^{2019}+1}\Rightarrow2B=\frac{2^{2019}+2}{2^{2019}+1}=\frac{2^{2019}+1+1}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)
Vì \(2^{2019}+1>2^{2018}+1\Rightarrow\frac{1}{2^{2019}+1}< \frac{1}{2^{2018}+1}\)
\(\Rightarrow2A>2B\Rightarrow A>B\)