K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2016

a=(10^7 -8 +13)/(10^7 - 8) = 1+ 13/(10^7 - 8)

b = (10^5 +6)/(10^5 -7) = (10^5-7+13)/(10^5 -7) = 1 + 13/(10^5-7)

vay b>a

6 tháng 3 2017

\(A=\frac{10^7+5}{10^7-8}=\frac{\left(10^7-8\right)+13}{10^7-8}=1+\frac{13}{10^7-8}\)

\(B=\frac{10^8+6}{10^8-7}=\frac{\left(10^8-7\right)+13}{10^8-7}=1+\frac{13}{10^8-7}\)

Vì \(10^7-8< 10^8-7\) nên \(\frac{13}{10^7-8}>\frac{13}{10^8-7}\)

\(\Rightarrow1+\frac{13}{10^7-8}>1+\frac{13}{10^8-7}\) do đó \(A>B\)

AH
Akai Haruma
Giáo viên
28 tháng 7

Lời giải:

a.

\(A-B=\frac{7-3}{84}-\frac{7-3}{83}=\frac{4}{84}-\frac{4}{83}<0\\ \Rightarrow A< B\)

b.

\(A-1=\frac{13}{10^7-8}\\ B-1=\frac{13}{10^8-7}\)

Hiển nhiên $10^7-8< 10^8-7$

$\Rightarrow \frac{13}{10^7-8}> \frac{13}{10^8-7}$

$\Rightarrow A-1> B-1\Rightarrow A> B$

1 tháng 4 2018

dễ thôi

A=\(\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)

B=\(\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)

\(10^8>10^7nen10^8-7>10^7-8\)

=> \(\frac{13}{10^8-7}< \frac{13}{10^7-8}hayB< A\)

2 tháng 4 2018

\(\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1-\frac{13}{10^7-8}\);\(\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1-\frac{13}{10^7-7}\)

Vì \(\frac{13}{10^8-8}< \frac{13}{10^7-7}\)nên A>B

AH
Akai Haruma
Giáo viên
26 tháng 10

Lời giải:

\(A=\frac{10^7-5}{10^7-8}=\frac{10^7-8+3}{10^7-8}=1+\frac{3}{10^7-8}\)

\(B=\frac{10^8+6}{10^8-7}=1+\frac{13}{10^8-7}\)

Ta thấy: \(\frac{3}{10^7-8}=\frac{30}{10^8-80}> \frac{30}{10^8-7}> \frac{13}{10^8-7}\)

\(\Rightarrow 1+\frac{3}{10^7-8}> 1+\frac{13}{10^8-7}\Rightarrow A>B\)

 

22 tháng 10 2017

\(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)

\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)

\(\frac{13}{10^7-7}>\frac{13}{10^8-7}\Rightarrow\frac{10^7+5}{10^7-8}>\frac{10^8+6}{10^8-7}\)

27 tháng 10 2017

linh ới mi còn kém lắm tui lm đc rùi nha mà ko cần nhìn cái j nha ^.^ hề hề

16 tháng 7 2016

\(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8}{10^7-8}+\frac{13}{10^7-8}=1+\frac{13}{10^7-8}\)

\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7}{10^8-7}+\frac{13}{10^8-7}\)

Dễ thấy 107 - 8 < 108 - 7 \(\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\)

\(\Rightarrow A>B\)

16 tháng 7 2016

cảm ơn nha để hỉu wá ,hi

a) A=\(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)

ta có :

 \(A=\left(1-\frac{1}{179}\right)+\left(1-\frac{1}{180}\right)+\left(1+\frac{2}{181}\right)\)

 \(\Rightarrow A=\left(1+1+1\right)-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)\)

\(\Rightarrow A=3-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)< 3\)

Vậy \(A< 3\)

2 tháng 5 2019

a. Ta có :

\(\frac{178}{179}< 1\left(\frac{1}{179}\right)\)

\(\frac{179}{180}< 1\left(\frac{1}{180}\right)\)

\(\frac{183}{181}>1\left(\frac{3}{181}\right)\left(1\right)\)

Mà \(\frac{3}{181}>\frac{1}{179}+\frac{1}{180}\left(=\frac{359}{32220}< \frac{3}{181}\right)\left(2\right)\)

Từ \(\left(1\right)\&\left(2\right)\Rightarrow\frac{178}{179}+\frac{179}{180}+\frac{183}{181}< 1+1+1\)

Vậy \(A< 3\)

So sánh A và B:A=10^7+5/10^7-8            B=10^8+6/10^8-7