Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(\frac{-4}{9}=\frac{-8}{18}>\frac{-8}{13}\Rightarrow\frac{-4}{9}>\frac{-8}{13}\)
b,Ta có: \(\frac{-2005}{2006}>-1\)
\(\frac{-2007}{2004}=-1-\frac{3}{2004}<-1\)
\(\Rightarrow-\frac{2005}{2006}>-1>-\frac{2007}{2004}\)
Vậy -2005/2006>-2007/2004
\(2005a=\frac{2005^{2006}+2005}{2005^{2006}+1}=\frac{2005^{2006}+1}{2005^{2006}+1}+\frac{2004}{2005^{2006}+1}=1+\frac{2004}{2005^{2006}+1}\)
\(2005b=\frac{2005^{2005}+2005}{2005^{2005}+1}=\frac{2005^{2005}+1}{2005^{2005}+1}+\frac{2004}{2005^{2005}+1}=1+\frac{2004}{2005^{2005}+1}\)
Ta thấy :\(2005^{2006}+1>2005^{2005}+1\)
\(\Rightarrow\frac{2004}{2005^{2006}+1}< \frac{2004}{2005^{2005}+1}\)
\(\Rightarrow1+\frac{2004}{2005^{2006}+1}< 1+\frac{2004}{2005^{2005}+1}\)
\(\Rightarrow2005a< 2005b\)
\(\Rightarrow a< b\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
a) \(\frac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\frac{\left(kb\right)^{2004}-b^{2004}}{\left(kb\right)^{2004}+b^{2004}}=\frac{k^{2004}b^{2004}-b^{2004}}{k^{2004}b^{2004}+b^{2004}}=\frac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\frac{k^{2004}-1}{k^{2004}+1}\)(1)
\(\frac{c^{2004}-d^{2004}}{d^{2004}+d^{2004}}=\frac{\left(kd\right)^{2004}-d^{2004}}{\left(kd\right)^{2004}+d^{2004}}=\frac{k^{2004}d^{2004}-d^{2004}}{k^{2004}d^{2004}+d^{2004}}=\frac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\frac{k^{2004}-1}{k^{2004}+1}\)(2)
Từ (1) và (2) => đpcm
b) \(\frac{a^{2005}}{b^{2005}}=\frac{\left(kb\right)^{2005}}{b^{2005}}=\frac{k^{2005}b^{2005}}{b^{2005}}=k^{2005}\)(1)
\(\frac{\left(a-c\right)^{2005}}{\left(b-d\right)^{2005}}=\frac{\left(kb-kd\right)^{2005}}{\left(b-d\right)^{2005}}=\frac{\left[k\left(b-d\right)\right]^{2005}}{\left(b-d\right)^{2005}}=\frac{k^{2005}\left(b-d\right)^{2005}}{\left(b-d\right)^{2005}}=k^{2005}\)(2)
Từ (1) và (2) => đpcm
ta có : chia a và b lần lượt chia cho (20^2004)^2005 và (20^2005)^2004
ta được (1+11/20^2005)^2004 và (1+11/20^2004)^2005
có:(1+11/20^2004)^2005> (1+11/20^2004)^2004 (vì 1+11/20^2004>1)
lại có : 11/20>1
nên 11/20^2004 >11/20^2005
nên(1+11/20^2004)^2004> (1+11/20^2005)^2004
mà(1+11/20^2004)^2005> (1+11/20^2004)^2004
nên (1+11/20^2004)^2005>(1+11/20^2005)^2004
VẬY a>b