Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{\left(2+2a\right).a:2}{a}=\frac{\left(a+1\right)a}{a}=a+1\)
\(Q=\frac{\left(2+2b\right).b:2}{b}=\frac{\left(b+1\right)b}{b}=b+1\)
P < Q => a+1 < b+1 => a < b
số số hạng là :
(2n - 2) : 2 + 1 = n (số)
tổng là :
(2n + 2) x n : 2 = n(n + 1)
B = n(n + 1) : n= n + 1
số số hạng là :
(2m - 2) : 2 + 1= m
tổng là :
(2m + 2) x m ; 2 = m(m + 1)
A = m(m + 1) : m = m+1
vì A<B nên m + 1 < n +1
=> m < n
a)\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}=\frac{71}{20}\) và \(4=\frac{4}{1}=\frac{80}{20}\)
mà 80 > 7 suy ra \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}< 4\)
b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=\frac{7}{8}\) và \(1=\frac{8}{8}\)
mà 7 < 8 suy ra \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}< 1\)
a)Ta có:A:B=\(\left(\frac{1}{4}.\frac{3}{6}.\frac{5}{8}....\frac{43}{46}.\frac{45}{48}\right):\left(\frac{2}{5}.\frac{4}{7}.\frac{6}{9}....\frac{44}{47}.\frac{46}{49}\right)=\frac{\left(1.3.5...45\right).\left(2.4.6...46\right)}{\left(4.6.8...48\right)\left(5.7.9...49\right)}=\frac{3.2}{47.48.49}
Vì bạn bảo gợi ý nên gợi ý thui không giải:
1) Bạn thấy con A có tử 6- 840 là âm mà 520+1 là dương =>tử âm,mẫu dương=> p/s đó là âm
Còn phần B thì trên tử 3-540 và 2-720 là 2 số âm,mà tử âm,mẫu âm thì phân số đó dương
Số dương như thế nào với số âm thì tự làm...(gợi ý mà)
2) Phần b giống phần a nhé!
a= 1/2 + 1/4 + 1/8 - 1 x 1 + 8/1 - 4/1 - 2/1=\(1\frac{7}{8}\)=1,875
b=3/1 - 6/3 - 9/6 - 369/1 : 1/3 + 3/6 + 6/9 - 1/963 \(\approx\)186,665628245067
c=1/1 - 1/2 + 3/1 - 1/4 + 5/1 - 1/6 + 7/1 - 1/8 + 9/1 - 1/10=\(\approx\)23,8583333333333
vậy a>b>c
**************************l i k e***********************************8
A = \(\left(-\frac{1}{8}\right)\times\left(-13\right)=\frac{13}{8}\) => 0 < A < 2
B: Tử âm ; mẫu dương => B < 0
C = \(\left(\frac{1}{1}+\frac{3}{1}+\frac{5}{1}+\frac{7}{1}+\frac{9}{1}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{10}\right)\)
= 25 \(-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{10}\right)\)
Dễ có: B < A < C
Đặt \(A=\frac{2+4+...+2a}{a};B=\frac{2+4+...+2b}{b}\)
Ta có: \(A=\frac{2+4+...+2a}{a}=\frac{2\left(1+2+...+a\right)}{a}=\frac{\frac{2a\left(a+1\right)}{2}}{a}=\frac{a\left(a+1\right)}{a}=a+1\)
\(B=\frac{2+4+...2b}{b}=\frac{2\left(1+2+...+b\right)}{b}=\frac{\frac{2b\left(b+1\right)}{2}}{b}=\frac{b\left(b+1\right)}{b}=b+1\)
Vì A < B => a+1 < b + 1
Xét a,b thuộc Z+ => a < b
Xét a,b thuộc Z- => a > b
2+4+6+8+..............2a=2(1+2+3+.............+a)=2.(a+1).a
=>2+4+6+8+..............2a/a=2.(a+1)
2+4+6+8+..............2b=2(1+2+3+.............+b)=2.(b+1).b
=>2+4+6+8+..............2b/b=2.(b+1)
Vì 2.(a+1)<2.(b+1)
=>a+1<b+1
=>a<b
Vậy a<b