Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{2014^{2013}+1}{2014^{2014}+1}\Leftrightarrow2014A=\dfrac{2014^{2014}+2014}{2014^{2014}+1}=\dfrac{2014^{2014}+1+2013}{2014^{2014}+1}=1+\dfrac{2013}{2014^{2014}+1}\)
\(B=\dfrac{2014^{2012}+1}{2014^{2013}+1}\Leftrightarrow2014B=\dfrac{2014^{2013}+2014}{2014^{2013}+1}=\dfrac{2014^{2013}+1+2013}{2014^{2013}+1}=1+\dfrac{2013}{2014^{2013}+1}\)
Dễ thấy: \(1+\dfrac{2013}{2014^{2014}+1}< 1+\dfrac{2013}{2014^{2013}+1}\) nên \(2014A< 2014B\) hay \(A< B\)
Ta có (2014^n-2013^)/(2014^n+2013^n) +1 = 2*2014^n/(2014^n+2013^n) chia cả tử và mẫu cho 2014 ta được A= 2/[1+(2013/2014)]
Tương tự (2013^n-2012^)/(2013^n+2012^n) +1 = 2*2013^n/(2013^n+2012^n) chia cả tử và mẫu cho 2013 ta được B= 2/[1+(2012/2013)]
Vì Ta có 2012/2013 < (2012+1)/(2013+1) = 2013/2014 nên A < B
Ta có: 1- 2012/2013=1/2013
1- 2013/2014=1/2014
Mà 1/2013>1/2014
vậy 2012/2013<2013/2014
\(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=\dfrac{2013}{1}+\dfrac{2012}{2}+...+\dfrac{2}{2012}+\dfrac{1}{2013}\)
\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=\left(1+\dfrac{2012}{2}\right)+\left(1+\dfrac{2011}{3}\right)+...+\left(1+\dfrac{2}{2012}\right)+\left(1+\dfrac{1}{2013}\right)+1\)
\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=\dfrac{2014}{2}+\dfrac{2014}{3}+...+\dfrac{2014}{2012}+\dfrac{2014}{2013}+\dfrac{2014}{2014}\)
\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=2014.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}\right)\)
\(\Leftrightarrow x=\dfrac{2014.\left(\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2014}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}}\)
\(\Leftrightarrow x=2014\)
Vậy \(x=2014\)
\(VP=\dfrac{2013}{1}+\dfrac{2012}{2}+...+\dfrac{1}{2013}\\ =\dfrac{2012}{2}+1+\dfrac{2011}{3}+1+...+\dfrac{1}{2013}+1+1\\ =\dfrac{2014}{2}+\dfrac{2014}{3}+...+\dfrac{2014}{2013}+\dfrac{2014}{2014}\\ =2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)\)
\(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)\\ x=2014\)
Vậy x = 2014
có \(\dfrac{2012+2013}{2013+2014}=\dfrac{2012}{2013+2014}+\dfrac{2013}{2013+2014}\)
mà\(\dfrac{2012}{2013+2014}< \dfrac{2012}{2013}\)
\(\dfrac{2013}{2013+2014}< \dfrac{2013}{2014}\)
\(\Rightarrow\dfrac{2012}{2013}+\dfrac{2013}{2014}>\dfrac{2012}{2013+2014}+\dfrac{2014}{2013+2014}\\ \Rightarrow\dfrac{2012}{2013}+\dfrac{2013}{2014}>\dfrac{2012+2013}{2013+2014}\\ \Rightarrow A>B\)