\(\sqrt{6}\) - \(\sqrt{7}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 6 2019

Lời giải:

a)

\(\sqrt{6}-\sqrt{7}=\frac{6-7}{\sqrt{6}+\sqrt{7}}=\frac{-1}{\sqrt{6}+\sqrt{7}}\)

\(\sqrt{7}-\sqrt{8}=\frac{7-8}{\sqrt{7}+\sqrt{8}}=\frac{-1}{\sqrt{7}+\sqrt{8}}\)

Thấy rằng \(\sqrt{6}+\sqrt{7}< \sqrt{7}+\sqrt{8}\)

\(\Rightarrow \frac{1}{\sqrt{6}+\sqrt{7}}> \frac{1}{\sqrt{7}+\sqrt{8}}\Rightarrow \frac{-1}{\sqrt{6}+\sqrt{7}}< \frac{-1}{\sqrt{7}+\sqrt{8}}\)

Hay $\sqrt{6}-\sqrt{7}< \sqrt{7}-\sqrt{8}$

b)

\(\sqrt{15}-\sqrt{14}=\frac{15-14}{\sqrt{15}+\sqrt{14}}=\frac{1}{\sqrt{15}+\sqrt{14}}\)

\(\sqrt{13}-\sqrt{12}=\frac{13-12}{\sqrt{13}+\sqrt{12}}=\frac{1}{\sqrt{13}+\sqrt{12}}\)

Dễ thấy \(\sqrt{15}+\sqrt{14}> \sqrt{13}+\sqrt{12}\Rightarrow \frac{1}{\sqrt{15}+\sqrt{14}}< \frac{1}{\sqrt{13}+\sqrt{12}}\)

Hay \(\sqrt{15}-\sqrt{14}< \sqrt{13}-\sqrt{12}\)

30 tháng 6 2019

Thank you ^.^

6 tháng 7 2018

Tính ra rồi so sánh

6 tháng 7 2018

a,\(\sqrt{12}=2\sqrt{3}=\sqrt{3}+\sqrt{3}\)

ta có \(\sqrt{5}>\sqrt{3}\)\(\sqrt{7}>\sqrt{3}\)=>\(\sqrt{5}+\sqrt{7}>\sqrt{12}\)

16 tháng 6 2017

a)    \(\sqrt{7}-\sqrt{5}< \sqrt{5}-\sqrt{3}\)

b)     \(\sqrt{15}-\sqrt{14}< \sqrt{14}-\sqrt{13}\)

9 tháng 9 2016

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)

 

12 tháng 8 2019

\(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}=\left(2\sqrt{5}+3\right)-\left(2\sqrt{5}-3\right)=6\)

\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)-\left(2\sqrt{5}-\sqrt{3}\right)=-\sqrt{5}\)

\(\sqrt{8-12\sqrt{5}}+\sqrt{48+6\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)+\left(3\sqrt{5}+\sqrt{3}\right)=4\sqrt{5}\)

\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\left(5-2\sqrt{6}\right)+\left(5+2\sqrt{6}\right)=10\)

\(\sqrt{15-6\sqrt{15}}+\sqrt{33-12\sqrt{6}}\) đề này sai ạ

\(\sqrt{16-6\sqrt{7}}+\sqrt{64-24\sqrt{7}}=\left(3-\sqrt{7}\right)+\left(6-2\sqrt{7}\right)=9-3\sqrt{7}\)

\(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\left(3-\sqrt{5}\right)+\left(3+\sqrt{5}\right)=6\)

\(\sqrt{1-6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

\(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\left(2\sqrt{2}+5\right)+\left(2\sqrt{2}-5\right)=4\sqrt{2}\)

\(\sqrt{46-6\sqrt{5}}+\sqrt{29-12\sqrt{5}}=\left(3\sqrt{5}-1\right)+\left(2\sqrt{5}-3\right)=5\sqrt{5}-4\)

#Học tốt ạ

2 tháng 6 2017

Võ Đông Anh Tuấn

Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)

a)

\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)

Vậy \(7>3\sqrt{5}\)

b)

\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)

Vậy \(8< 2\sqrt{7}+3\)

c)

\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)

Vậy \(3\sqrt{6}< 2\sqrt{15}\)

28 tháng 6 2019

Cái này mk làm câu a), câu b) bạn tự áp dụng nha :3

a)

\(\sqrt{6}-\sqrt{7}=\frac{\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{6}+\sqrt{7}\right)}{\left(\sqrt{6}+\sqrt{7}\right)}=\frac{6-7}{\sqrt{6}+\sqrt{7}}=\frac{-1}{\sqrt{6}+\sqrt{7}}\)

Tương tự ta có \(\sqrt{7}-\sqrt{8}=\frac{-1}{\sqrt{7}+\sqrt{8}}\)

Dễ dàng thấy \(\sqrt{7}+\sqrt{8}>\sqrt{6}+\sqrt{7}\Rightarrow\frac{1}{\sqrt{7}+\sqrt{8}}< \frac{1}{\sqrt{6}+\sqrt{7}}\Leftrightarrow\frac{-1}{\sqrt{7}+\sqrt{8}}>\frac{-1}{\sqrt{6}+\sqrt{7}}\)

Vậy \(\sqrt{7}-\sqrt{8}>\sqrt{6}-\sqrt{7}\)

31 tháng 7 2018

a)

\(\left(\sqrt{5}+\sqrt{7}\right)^2=12+2\sqrt{35}\)

\(\sqrt{12}^2=12\)

=>\(\sqrt{5}+\sqrt{7}>\sqrt{12}\)

các câu còn lại cũng làm như vậy

28 tháng 8 2018

hay đấyHọc tốt

31 tháng 7 2018

a)\(\sqrt{8}+3< \sqrt{9}+3=3+3=6< 6+\sqrt{2}\)

b)\(14=\sqrt{196}>\sqrt{195}=\sqrt{13.15}=\sqrt{13}.\sqrt{15}\)

c) Ta có: \(\hept{\begin{cases}\sqrt{27}>\sqrt{25}=5\\\sqrt{6}>\sqrt{4}=2\end{cases}\Rightarrow\sqrt{27}+\sqrt{6}+1>5+2+1=8}\)

Mà \(\sqrt{48}< \sqrt{49}=7< 8\)

\(\Rightarrow\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)

Tham khảo nhé~