Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{x-1}{59}+\dfrac{x-2}{58}+\dfrac{x-3}{57}=\dfrac{x-4}{56}+\dfrac{x-5}{55}+\dfrac{x-6}{54}\)
\(\Leftrightarrow\dfrac{x-60}{59}+\dfrac{x-60}{58}+\dfrac{x-60}{57}-\dfrac{x-60}{56}-\dfrac{x-60}{55}-\dfrac{x-60}{54}=0\)
\(\Leftrightarrow x-60=0\)
hay x=60
\(a,\dfrac{-5}{13}+\dfrac{8}{13}=\dfrac{3}{13}\\ b,\dfrac{5}{31}+\dfrac{-22}{31}=\dfrac{-17}{31}\\ c,\dfrac{-13}{43}+\dfrac{-40}{43}=\dfrac{-53}{43}\\ d,\dfrac{-3}{29}-\dfrac{16}{58}=\dfrac{-11}{29}\\ e,\dfrac{8}{40}-\dfrac{-36}{45}=1\\ f,\dfrac{-8}{18}-\dfrac{-15}{27}=\dfrac{1}{9}\\ g,\left(-2\right)+\dfrac{-5}{8}=\dfrac{-21}{8}\)
Lời giải:
\(A=\frac{1}{2}+\frac{1}{33}+\frac{1}{34}+\frac{1}{35}+\frac{1}{51}+\frac{1}{53}+\frac{1}{55}+\frac{1}{57}+\frac{1}{59}\)
Ta có:
\(\frac{1}{33}+\frac{1}{34}+\frac{1}{35}< \frac{1}{30}+\frac{1}{30}+\frac{1}{30}=\frac{3}{30}=\frac{1}{10}\)
\(\frac{1}{51}+\frac{1}{53}+\frac{1}{55}+\frac{1}{57}+\frac{1}{59}< \frac{1}{50}+\frac{1}{50}+\frac{1}{50}+\frac{1}{50}+\frac{1}{50}=\frac{5}{50}=\frac{1}{10}\)
Cộng theo vế:
\(\frac{1}{33}+\frac{1}{34}+\frac{1}{35}+\frac{1}{51}+\frac{1}{53}+\frac{1}{55}+\frac{1}{57}+\frac{1}{59}< \frac{2}{10}=\frac{1}{5}\)
Suy ra \(A< \frac{1}{2}+\frac{1}{5}=\frac{7}{10}\)
Ta có đpcm.
Mẫu số chung : \(LCM\left(60;120;36;90;72\right)=360\)
Quy đồng mẫu số :
\(\dfrac{360}{360}+\dfrac{-6}{360}+\dfrac{57}{360}< \dfrac{10\cdot x}{360}< \dfrac{232}{360}+\dfrac{295}{360}+\dfrac{-6}{360}\)
\(\Leftrightarrow\dfrac{411}{360}< \dfrac{10\cdot x}{360}< \dfrac{521}{360}\)
Vậy tập hợp các giá trị của x là \(x=\left\{42;43;44;45;46;47;48;49;50;51;52\right\}\)
b, Ta có: \(\dfrac{58}{53}>1>\dfrac{36}{55}\)
hay \(\dfrac{58}{53}>\dfrac{36}{55}\)
\(\Rightarrow0-\dfrac{58}{53}< 0-\dfrac{36}{55}\)
\(\Rightarrow\dfrac{-58}{53}< \dfrac{-36}{55}\)