\(\dfrac{2016+2017}{2017+2018}\)và B=\(\dfrac{201...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2017

a, Ta có: \(\dfrac{2016}{2017+2018}< \dfrac{2016}{2017}\)

\(\dfrac{2017}{2017+2018}< \dfrac{2017}{2018}\)

\(\Rightarrow A=\dfrac{2016+2017}{2017+2018}< B=\dfrac{2016}{2017}+\dfrac{2017}{2018}\)

Vậy A < B

b, Ta có: \(\dfrac{2017}{2016+2017}< \dfrac{2017}{2016}\)

\(\dfrac{2018}{2016+2017}< \dfrac{2018}{2017}\)

\(\Rightarrow M=\dfrac{2017+2018}{2016+2017}< N=\dfrac{2017}{2016}+\dfrac{2018}{2017}\)

Vậy M < N

19 tháng 5 2018

Giải:

Ta có:

\(P=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)

\(Q=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)

\(\left\{{}\begin{matrix}\dfrac{2016}{2017}=\dfrac{2016}{2017}\\\dfrac{2017}{2018}=\dfrac{2017}{2018}\\\dfrac{2018}{2019}=\dfrac{2018}{2019}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)

Hay \(P=Q\)

Vậy ...

22 tháng 5 2018

bạn lm sai r

18 tháng 3 2018

\(A=\dfrac{\dfrac{1}{2017}+\dfrac{2}{2016}+\dfrac{3}{2015}+...+\dfrac{2016}{2}+\dfrac{2017}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{\left(\dfrac{1}{2017}+1\right)+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{3}{2015}+1\right)+...+\left(\dfrac{2016}{2}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{\dfrac{2018}{2017}+\dfrac{2018}{2016}+\dfrac{2018}{2015}+...+\dfrac{2018}{2}+\dfrac{2018}{2018}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}=2018\)

8 tháng 7 2017

Các câu dễ bạn tự làm nha:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(A=\dfrac{2017^{2017}+1}{2017^{2018}+1}< 1\)

\(A< \dfrac{2017^{2017}+1+2016}{2017^{2018}+1+2016}\Rightarrow A< \dfrac{2017^{2017}+2017}{2017^{2018}+2017}\Rightarrow A< \dfrac{2017\left(2017^{2016}+1\right)}{2017\left(2017^{2017}+1\right)}\Rightarrow A< \dfrac{2017^{2016}+1}{2017^{2017}+1}=B\)\(A< B\)

17 tháng 8 2017

a) \(S=\dfrac{2+2^2+2^3+...+2^{2017}}{1-2^{2017}}\)

\(\Rightarrow2S=\dfrac{2\left(2+2^2+2^3+...+2^{2017}\right)}{1-2^{2017}}\)

\(2S=\dfrac{2^2+2^3+2^4+...+2^{2018}}{1-2^{2017}}\)

\(\Rightarrow2S-S=S=\dfrac{2^2+2^3+2^4+...+2^{2018}}{1-2^{2017}}-\dfrac{2+2^2+2^3+...+2^{2017}}{1-2^{2017}}\)

\(S=\dfrac{\left(2^2+2^3+2^4+...+2^{2018}\right)-\left(2+2^2+2^3+...+2^{2017}\right)}{1-2^{2017}}\)

\(S=\dfrac{2^{2018}-2}{1-2^{2017}}=\dfrac{-2\left(1-2^{2017}\right)}{1-2^{2017}}=-2\) vậy \(S=-2\)

24 tháng 8 2017

Đề ra là thế này hả: So sánh A và B ....................

Vì hai phân số của A đều bé hơn 1 nên tổng chúng bé hơn 2. Vậy A < B

24 tháng 8 2017

Ê em chào chị Hoàng

6 tháng 6 2017

Ta có :

\(M=\dfrac{2018^{2017}+1}{2018^{2018}+1}< 1\)

\(\Rightarrow M< \dfrac{2018^{2017}+1+2017}{2017^{2018}+1+2017}=\dfrac{2018^{2017}+2018}{2017^{2018}+2018}=\dfrac{2018\left(2018^{2016}+1\right)}{2018\left(2018^{2017}+1\right)}=\dfrac{2018^{2016}+1}{2018^{2017}+1}=N\)

\(\Rightarrow M< N\)

6 tháng 6 2017

Giải:

Ta có:

\(2018M=\dfrac{\left(2018^{2017}+1\right)2018}{2018^{2018}+1}.\)

\(2018M=\dfrac{2018^{2018}+2018}{2018^{2018}+1}.\)

\(2018M=\dfrac{\left(2018^{2018}+1\right)+2017}{2018^{2018}+1}.\)

\(2018M=\dfrac{2018^{2018}+1}{2018^{2018}+1}+\dfrac{2017}{2018^{2018}+1}.\)

\(2018M=1+\dfrac{2017}{2018^{2018}+1}._{\left(1\right)}\)

Ta lại có:

\(2018N=\dfrac{\left(2018^{2016}+1\right)2018}{2018^{2017}+1}.\)

\(2018N=\dfrac{2018^{2017}+2018}{2018^{2017}+1}.\)

\(2018N=\dfrac{\left(2018^{2017}+1\right)+2017}{2018^{2017}+1}.\)

\(2018N=\dfrac{2018^{2017}+1}{2018^{2017}+1}+\dfrac{2017}{2018^{2017}+1}.\)

\(2018N=1+\dfrac{2017}{2018^{2017}+1}._{\left(2\right)}\)

\(\dfrac{2017}{2018^{2018}+1}< \dfrac{2017}{2018^{2017}+1}._{\left(3\right)}\)

Từ \(_{\left(1\right);\left(2\right)}\)\(_{\left(3\right)}\Rightarrow2018M< 2018N\Rightarrow M< N.\)

Vậy......

~ Học tốt!!! ~

23 tháng 4 2017

Dạng bài tương tự như bài này, bạn áp dụng cách làm vào làm bài của bạn nhé: Câu hỏi của Dao Dao - Toán lớp 7 | Học trực tuyến

23 tháng 4 2017

\(A=\dfrac{\dfrac{2017}{2}+\dfrac{2017}{3}+\dfrac{2017}{4}+...+\dfrac{2017}{2018}}{\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{1}{2017}}\)

Đặt \(\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{1}{2017}\) là B

\(B=\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{1}{2017}\\ =\dfrac{2017}{1}+1+\dfrac{2016}{2}+1+...+\dfrac{1}{2017}+1-2017\\ =\dfrac{2018}{1}+\dfrac{2018}{2}+...+\dfrac{2018}{2017}-2017\\ =\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+\left(2018-2017\right)\\ =\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+1\\ =\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+\dfrac{2018}{2018}\\ =2018.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)\)

\(A=\dfrac{\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2018}}{2018\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)}\\ =\dfrac{2017.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)}{2018.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)}\\ =\dfrac{2017}{2018}\)

14 tháng 4 2019

Đặt \(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)+\(\frac{2018}{2019}\)+\(\frac{2019}{2016}\) là A

A=1-\(\frac{1}{2017}\)+1-\(\frac{1}{2018}\)+1-\(\frac{1}{2019}\)+1+\(\frac{3}{2016}\)

A=4-(\(\frac{1}{2017}\)+\(\frac{1}{2018}\)+\(\frac{1}{2019}\)-\(\frac{3}{2016}\)) Do \(\frac{1}{2017}\)+\(\frac{1}{2018}\)+\(\frac{1}{2019}\)-\(\frac{3}{2016}\)<0 =>A>4