Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có:
\(P=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)
và \(Q=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)
Vì \(\left\{{}\begin{matrix}\dfrac{2016}{2017}=\dfrac{2016}{2017}\\\dfrac{2017}{2018}=\dfrac{2017}{2018}\\\dfrac{2018}{2019}=\dfrac{2018}{2019}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)
Hay \(P=Q\)
Vậy ...
\(A=\dfrac{\dfrac{1}{2017}+\dfrac{2}{2016}+\dfrac{3}{2015}+...+\dfrac{2016}{2}+\dfrac{2017}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)
\(A=\dfrac{\left(\dfrac{1}{2017}+1\right)+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{3}{2015}+1\right)+...+\left(\dfrac{2016}{2}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)
\(A=\dfrac{\dfrac{2018}{2017}+\dfrac{2018}{2016}+\dfrac{2018}{2015}+...+\dfrac{2018}{2}+\dfrac{2018}{2018}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)
\(A=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}=2018\)
Các câu dễ bạn tự làm nha:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(A=\dfrac{2017^{2017}+1}{2017^{2018}+1}< 1\)
\(A< \dfrac{2017^{2017}+1+2016}{2017^{2018}+1+2016}\Rightarrow A< \dfrac{2017^{2017}+2017}{2017^{2018}+2017}\Rightarrow A< \dfrac{2017\left(2017^{2016}+1\right)}{2017\left(2017^{2017}+1\right)}\Rightarrow A< \dfrac{2017^{2016}+1}{2017^{2017}+1}=B\)\(A< B\)
a) \(S=\dfrac{2+2^2+2^3+...+2^{2017}}{1-2^{2017}}\)
\(\Rightarrow2S=\dfrac{2\left(2+2^2+2^3+...+2^{2017}\right)}{1-2^{2017}}\)
\(2S=\dfrac{2^2+2^3+2^4+...+2^{2018}}{1-2^{2017}}\)
\(\Rightarrow2S-S=S=\dfrac{2^2+2^3+2^4+...+2^{2018}}{1-2^{2017}}-\dfrac{2+2^2+2^3+...+2^{2017}}{1-2^{2017}}\)
\(S=\dfrac{\left(2^2+2^3+2^4+...+2^{2018}\right)-\left(2+2^2+2^3+...+2^{2017}\right)}{1-2^{2017}}\)
\(S=\dfrac{2^{2018}-2}{1-2^{2017}}=\dfrac{-2\left(1-2^{2017}\right)}{1-2^{2017}}=-2\) vậy \(S=-2\)
Đề ra là thế này hả: So sánh A và B ....................
Vì hai phân số của A đều bé hơn 1 nên tổng chúng bé hơn 2. Vậy A < B
Ta có :
\(M=\dfrac{2018^{2017}+1}{2018^{2018}+1}< 1\)
\(\Rightarrow M< \dfrac{2018^{2017}+1+2017}{2017^{2018}+1+2017}=\dfrac{2018^{2017}+2018}{2017^{2018}+2018}=\dfrac{2018\left(2018^{2016}+1\right)}{2018\left(2018^{2017}+1\right)}=\dfrac{2018^{2016}+1}{2018^{2017}+1}=N\)
\(\Rightarrow M< N\)
Giải:
Ta có:
\(2018M=\dfrac{\left(2018^{2017}+1\right)2018}{2018^{2018}+1}.\)
\(2018M=\dfrac{2018^{2018}+2018}{2018^{2018}+1}.\)
\(2018M=\dfrac{\left(2018^{2018}+1\right)+2017}{2018^{2018}+1}.\)
\(2018M=\dfrac{2018^{2018}+1}{2018^{2018}+1}+\dfrac{2017}{2018^{2018}+1}.\)
\(2018M=1+\dfrac{2017}{2018^{2018}+1}._{\left(1\right)}\)
Ta lại có:
\(2018N=\dfrac{\left(2018^{2016}+1\right)2018}{2018^{2017}+1}.\)
\(2018N=\dfrac{2018^{2017}+2018}{2018^{2017}+1}.\)
\(2018N=\dfrac{\left(2018^{2017}+1\right)+2017}{2018^{2017}+1}.\)
\(2018N=\dfrac{2018^{2017}+1}{2018^{2017}+1}+\dfrac{2017}{2018^{2017}+1}.\)
\(2018N=1+\dfrac{2017}{2018^{2017}+1}._{\left(2\right)}\)
Và \(\dfrac{2017}{2018^{2018}+1}< \dfrac{2017}{2018^{2017}+1}._{\left(3\right)}\)
Từ \(_{\left(1\right);\left(2\right)}\) và \(_{\left(3\right)}\Rightarrow2018M< 2018N\Rightarrow M< N.\)
Vậy......
~ Học tốt!!! ~
Dạng bài tương tự như bài này, bạn áp dụng cách làm vào làm bài của bạn nhé: Câu hỏi của Dao Dao - Toán lớp 7 | Học trực tuyến
\(A=\dfrac{\dfrac{2017}{2}+\dfrac{2017}{3}+\dfrac{2017}{4}+...+\dfrac{2017}{2018}}{\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{1}{2017}}\)
Đặt \(\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{1}{2017}\) là B
\(B=\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{1}{2017}\\ =\dfrac{2017}{1}+1+\dfrac{2016}{2}+1+...+\dfrac{1}{2017}+1-2017\\ =\dfrac{2018}{1}+\dfrac{2018}{2}+...+\dfrac{2018}{2017}-2017\\ =\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+\left(2018-2017\right)\\ =\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+1\\ =\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+\dfrac{2018}{2018}\\ =2018.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)\)
\(A=\dfrac{\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2018}}{2018\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)}\\ =\dfrac{2017.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)}{2018.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)}\\ =\dfrac{2017}{2018}\)
Đặt \(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)+\(\frac{2018}{2019}\)+\(\frac{2019}{2016}\) là A
A=1-\(\frac{1}{2017}\)+1-\(\frac{1}{2018}\)+1-\(\frac{1}{2019}\)+1+\(\frac{3}{2016}\)
A=4-(\(\frac{1}{2017}\)+\(\frac{1}{2018}\)+\(\frac{1}{2019}\)-\(\frac{3}{2016}\)) Do \(\frac{1}{2017}\)+\(\frac{1}{2018}\)+\(\frac{1}{2019}\)-\(\frac{3}{2016}\)<0 =>A>4
a, Ta có: \(\dfrac{2016}{2017+2018}< \dfrac{2016}{2017}\)
\(\dfrac{2017}{2017+2018}< \dfrac{2017}{2018}\)
\(\Rightarrow A=\dfrac{2016+2017}{2017+2018}< B=\dfrac{2016}{2017}+\dfrac{2017}{2018}\)
Vậy A < B
b, Ta có: \(\dfrac{2017}{2016+2017}< \dfrac{2017}{2016}\)
\(\dfrac{2018}{2016+2017}< \dfrac{2018}{2017}\)
\(\Rightarrow M=\dfrac{2017+2018}{2016+2017}< N=\dfrac{2017}{2016}+\dfrac{2018}{2017}\)
Vậy M < N