Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) $A-B=99.10^k-10^{k+2}-10^k=99.10^k-100.10^k-10^k$
$=10^k(99-100-1)=-2.10^k< 0$
$\Rightarrow A<b$
b) $99^{20}-9999^{10}=99^{20}-(99.101)^{10}$
$<99^{20}-(99.99)^{10}=99^{20}-99^{20}=0$
$\Rightarrow 99^{20}<9999^{10}$
đặt \(A=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^n}\)
\(\Rightarrow3A=3+1+\frac{1}{3}+...+\frac{1}{3^{n-1}}\)
\(\Rightarrow3A-A=(3+1+...+\frac{1}{3^{n-1}})-(1+\frac{1}{3}+...+\frac{1}{3^n})\)
\(\Rightarrow2A=3-\frac{1}{3^n}\)
\(\Rightarrow A=(3-\frac{1}{3^n})\div2\)
Đặt A=1 + 1/3 + 1/32 + 1/33+...+ 1/3n
=> 3A= 3 + 1 + 1/3 + 1/32 +...+ 1/3n-1
=> 3A - A = 2A = 3 - 1/3n
=> 2A =(3n+1 - 1) / 3n
=> A= (3n+1 - 1) / 3n.2
K cho mk nha!
Nhàn Lê
Ta có :
5,625 = 25,125
TỪ đó ta lập được các tỉ thức sau :
\(\frac{5}{25}=\frac{25}{625}\) ; \(\frac{5}{25}=\frac{25}{625}\);\(\frac{625}{25}=\frac{25}{5}\);\(\frac{625}{25}=\frac{25}{5}\)
Đặt \(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{20}}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+...+\frac{1}{2^9}\)
\(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(\Rightarrow A=2-\frac{1}{2^{10}}\)
đặt \(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\)
\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^9}\)
\(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(A=2-\frac{1}{2^{10}}\)
Bài 1 :
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\Rightarrow x=16;y=24;z=30\)
bài 2 :
Đặt \(x=2k;y=5k\Rightarrow xy=10k^2=10\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
Với k = 1 thì x = 2 ; y = 5
Với k = - 1 thì x = -2 ; y = -5
\(\text{Giải:}\)
\(\text{Ta có: 99.10^k-10^k+2=99.10^k -10^k . 100}\)
\(\text{A=-(10^k) mà: B=10^k nên: B lớn hơn A vậy: B lớn hơn A}\)
Ta có : A = 99 . 10k - 10k+2 = 99 . 10k - 10k . 102
= 10k . ( 99 - 100 ) = -1 . 10k
= -10k Vậy A < 0
Mà B = 10k ( k > 0 )
B > 0
Nên A < B