Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{3000}=2^{3\cdot1000}=\left(2^3\right)^{1000}=8^{1000}< 9^{1000}=\left(3^2\right)^{1000}=3^{2\cdot1000}=3^{2000}\)
Giải:
a)Ta có:
C=1957/2007=1957+50-50/2007
=2007-50/2007
=2007/2007-50/2007
=1-50/2007
D=1935/1985=1935+50-50/1985
=1985-50/1985
=1985/1985-50/1985
=1-50/1985
Vì 50/2007<50/1985 nên -50/2007>-50/1985
⇒C>D
b)Ta có:
A=20162016+2/20162016-1
A=20162016-1+3/20162016-1
A=20162016-1/20162016-1+3/20162016-1
A=1+3/20162016-1
Tương tự: B=20162016/20162016-3
B=1+3/20162016-3
Vì 20162016-1>20162016-3 nên 3/20162016-1<3/20162016-3
⇒A<B
Chúc bạn học tốt!
Làm tiếp:
c)Ta có:
M=102018+1/102019+1
10M=10.(102018+1)/202019+1
10M=102019+10/102019+1
10M=102019+1+9/102019+1
10M=102019+1/102019+1 + 9/102019+1
10M=1+9/102019+1
Tương tự:
N=102019+1/102020+1
10N=1+9/102020+1
Vì 9/102019+1>9/102020+1 nên 10M>10N
⇒M>N
Chúc bạn học tốt!
2010^2 và 2009.2011
<=> (2009+1).2010 và 2009.(2010+1)
<=> 2009.2010+2010 > 2009.2010+2009
b) phân tích 2^16 - 1 ta được
2^16-1=(2^8+1)(2^4+1)(2^2+1)(2^2-1)=A
Vậy B>A
tick mik đi rùi mik làm típ câu b cho !!!
nếu a>0
thì 5a>0
(-5)a<0
nếu a=0 thì
5a=0
(-5)a=0
nếu a<0 thì
5a<0
(-5)a>0
bạn kích vào chữ đúng dưới mỗi câu trả lời. đó là cách k đúng.
lưu ý: ĐỪNG KÍCH CHỮ SAI
2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)
Vậy \(2^{332}< 3^{223}\)
1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)
\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)
Nên suy ra \(10A>10B\Rightarrow A>B\)
a) ta có: \(1-\frac{2012}{2013}=\frac{1}{2013}\)
\(1-\frac{2013}{2014}=\frac{1}{2014}\)
mà \(\frac{1}{2013}>\frac{1}{2014}\) nên \(\frac{2013}{2014}>\frac{2012}{2013}\)
a: -3/4=-9/12
-5/6=-10/12
mà -9>-10
nên -3/4>-5/6
b: -5/17<0<2/7
c: 11/10>1>9/14
a)\(2^{2000}=\left(2^2\right)^{1000}\)
\(3^{6000}=\left(3^3\right)^{1000}\)
\(3^3>2^2\)
b) \(3^{20000}=\left(3^2\right)^{10000}\)
\(3^2>7\)
c) \(2^{3000}=\left(2^3\right)^{1000}\)
\(2^3>5\)
a) 22000 và 36000
Ta có :
22000 = (22)1000 = 41000
36000 = (36)1000 = 7291000
Ta thấy : 41000 < 7291000 => 22000 < 36000
b) 710000 và 320000
Ta có :
320000 = (32)10000 = 910000
Ta thấy 910000 > 710000 => 710000 < 320000
c) 51000 và 23000
Ta có :
23000 = (23)1000 = 81000
Ta thấy : 51000 < 81000 => 51000 < 23000