K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2019

A = 2017 2018 + 2018 2019 > 2017 2019 + 2018 2019 = 2017 + 2018 2019 > 2017 + 2018 2018 + 2019 = B

8 tháng 9 2018

Ta có: \(B=\dfrac{2017+2018+2019}{2018+2019+2020}=\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2019+2020}\)

\(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019+2020}\)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019+2020}\)

\(\dfrac{2019}{2020}>\dfrac{2019}{2018+2019+2020}\)

\(\Rightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}>\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2919+2020}\)

\(\Rightarrow A>B.\)

Vậy \(A>B.\)

7 tháng 8 2017

Bằng nhau nha

12 tháng 4 2018

Ta có : \(0< \frac{2017}{2018}< 1\) nên   \(\frac{2017}{2018}>\frac{2017+2019}{2018+2019}\)(1)

\(0< \frac{2018}{2019}< 1\) nên \(\frac{2018}{2019}>\frac{2018+2018}{2018+2019}\) (2)

Cộng vế theo vế 1 và 2 ta được : \(B=\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018+2018+2019}{2018+2019}=\frac{2017+2018}{2018 +2019}+1=A+1>A\)

Vậy B>A

12 tháng 4 2018

Ta có : 

\(A=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Vì : 

\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)

\(\frac{2018}{2018+2019}< \frac{2018}{2019}\)

Nên \(\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}\) ( cộng theo vế ) 

\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

12 tháng 4 2018

Mình thấy là A<B.

Tách A=2017+2018/2018+2019=2017/2018+2019 + 2018/2018+2019

Ta thấy từng số hạng của A lần lượt nhỏ hơn số hạng của B

=> A<B

1 tháng 3 2018

Ta có :  

\(B=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Vì : 

\(\frac{2017}{2018}>\frac{2017}{2018+2019}\)

\(\frac{2018}{2019}>\frac{2018}{2018+2019}\)

\(\Rightarrow\)\(\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018}{2018+2019}\) hay \(A>B\)

Vậy \(A>B\)

Chúc bạn học tốt ~

1 tháng 3 2018

cảm ơn bạn nhưng mình cần hai cách

30 tháng 8 2017

Ta có: \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\)

=> \(\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)

=> A > B

30 tháng 8 2017

Ta có :

\(B=\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)

Ta thấy :

\(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\left(1\right)\)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow A>B\)

13 tháng 5 2019

Có: \(A=\frac{2018^{2019}+1}{2018^{2019}-2017}=\frac{2018^{2019}+1-2018+2018}{2018^{2019}-2017}=\frac{2018^{2019}-2017+2018}{2018^{2019}-2017}=1+\frac{2018}{2018^{2019}-2017}\)

\(B=\frac{2018^{2019}+2}{2018^{2019}-2016}=\frac{2018^{2019}+2-2018+2018}{2018^{2019}-2016}=\frac{2018^{2019}-2016+2018}{2018^{2019}-2016}=1+\frac{2018}{2018^{2019}-2016}\)

Mà: \(\frac{2018}{2018^{2019}-2017}>\frac{2018}{2018^{2019}-2016}\)

\(\Rightarrow1+\frac{2018}{2018^{2019}-2017}>1+\frac{2018}{2018^{2019}-2016}\\ \Rightarrow A>B\)

6 tháng 8 2017

Ta có : \(\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)

Rõ ràng ta thấy : \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\) (1)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\) (2)

Từ (1)(2), suy ra :

\(\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)

Vậy ......................

~ Học tốt ~

6 tháng 8 2017

Ta có : \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}=\left(1-\dfrac{1}{2018}\right)+\left(1-\dfrac{1}{2019}\right)+\left(1-\dfrac{1}{2020}\right)\)\(=\left(1+1+1\right)-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)\)

\(=3+\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)< 3\)

Vậy \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}< 3\)

Biểu thức M lớn hơn biểu thức N