Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A có : 100 - 2 + 1 = 99 thừa số.
Tất cả thừa số của A đều âm.
=> A < 0 < \(\frac{1}{2}\)
đật tông này là A
suy ra A<1/1.2+1/2.3+1/3.4+...+1/2010.2011
Ta có: 1/1.2+1/2.3+1/3.4+...+1/2010.2011=1-1/2+1/2-1/3+1/3-1/4+...+1/2010-1/2011
=1-1/2011=2010/2011
Vì 2010/2011<1suy ra A<1 hay 1/2^2+1/3^2+...+1/2011^2
\(M=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}\)
\(>1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1+\frac{1}{2}-\frac{1}{11}\)
\(>1+\frac{1}{2}-\frac{1}{6}=\frac{4}{3}\)
Ta có: \(S=1+3+3^2+...+3^{20}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{21}\)
\(\Rightarrow3S-S=\left(3+3^2+3^3+...+3^{21}\right)-\left(1+3+3^2+...+3^{20}\right)\)
\(\Rightarrow2S=3^{21}-1\)
\(\Rightarrow S=\left(3^{21}-1\right).\frac{1}{2}\)
\(\Rightarrow S=3^{21}.\frac{1}{2}-\frac{1}{2}\)
Vì \(3^{21}.\frac{1}{2}-\frac{1}{2}< 3^{21}.\frac{1}{2}\) nên \(A< \frac{1}{2}.3^{21}\)
Vậy \(A< \frac{1}{2}.3^{21}\)
\(Q=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{40^2}\right)\)
\(=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)...\left(\frac{40^2-1}{40^2}\right)\)
\(=\frac{\left(2-1\right)\left(2+1\right)}{2^2}\frac{\left(3-1\right)\left(3+1\right)}{3^2}...\frac{\left(40-1\right)\left(40+1\right)}{40^2}\)
\(=\frac{1.3.2.4.3.5...39.41}{2^2.3^2.4^2...40^2}\)
\(=\frac{1.2.3...39}{2.3.4...40}.\frac{3.4.5...41}{2.3.4...40}=\frac{1}{40}.\frac{41}{2}=\frac{1}{2}.\frac{41}{40}\)
Mà \(41>40\Rightarrow\frac{41}{40}>1\Rightarrow\frac{1}{2}.\frac{41}{40}>\frac{1}{2}\Rightarrow A>\frac{1}{2}\)
M = 40 + 41 + 42 + 43 + ........ + 423
=> 4M = 41 + 42 + 43 + 44 + ............ + 424
=> 4M - M = (41 + 42 + 43 + 44 + ............ + 424) - (40 + 41 + 42 + 43 + ........ + 423)
=> 3M = 424 - 1
=> 3M + 1 = 424 = 47.417 > 6.37