Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\) (a;b;c \(\in\) N*)
Ta có:
\(B=\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}\)
\(B< \frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)
=> A > B
Ta thấy:A=\(\frac{10^{19}+1}{10^{20}+1}\)=>10A=\(\frac{10^{20}+10}{10^{20}+1}\)
=>10A=\(\frac{10^{20}+1+9}{10^{20}+1}\)
=>10A=1+\(\frac{9}{10^{20}+1}\)
Ta thấy:B=\(\frac{10^{20}+1}{10^{21}+1}\)
=>10B=\(\frac{10^{21}+10}{10^{21}+1}\)
=>10B=\(\frac{10^{21}+1+9}{10^{21}+1}\)
=>10B=1+\(\frac{9}{10^{21}+1}\)
Do \(\frac{9}{10^{20}+1}\)> \(\frac{9}{10^{21}+1}\)=>A > B
A= 80.(34 + 1)(38 + 1)(316 + 1)(332 + 1)
A = (34 - 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)
A = (38 - 1)(38 + 1)(316 + 1)(332 + 1)
A = (316 - 1)(316 + 1)(332 + 1)
A = (332 - 1)(332 + 1)
A = 364 - 1 < 364 = B
=> A < B
A = (2 - 1)(2 + 1)(2^2 + 1 )(2^4 + 1 ) (2^8 + 1)(2^16 + 1) ( nhân vói 2 - 1 = 1 Gía không thay dổi)
A = ( 2 ^2 - 1 )(2^2 + 1 )(2^4 + 1 )(2^8 + 1 )(2^16 + 1 )
A = ( 2^4 - 1 )(2^4 + 1)(2^8 + 1)(2^16 + 1)
A = (2^8 - 1)(2^8 + 1)(2^16 + 1)
A = (2^16 - 1)(2^16 + 1 )
A = 2^32 - 1 <2^32 = B
VẬy A < B
sai đề rồi bạn.\(\frac{a}{b}>\frac{a+c}{b+c}\) với \(a>b\) mới đúng nha.
Ta có:\(A=\frac{10^{17}+1}{10^{16}+1}>\frac{10^{17}+1+9}{10^{16}+1+9}=\frac{10^{17}+10}{10^{16}+10}=\frac{10\left(10^{16}+1\right)}{10\left(10^{15}+1\right)}=\frac{10^{16}+1}{10^{15}+1}\)
\(\Rightarrow A>B\)
Mình ghi nhầm đề bài 1 tí đề bài là :
So sánh 2 số A và B biết :
A = (3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1) và B = 3^32 - 1
\(B=10^{32}-1=\left(10-1\right)\left(10+1\right)\left(10^2+1\right)\left(10^4+1\right)\left(10^8+1\right)\left(10^{16}+1\right)\left(10^{32}+1\right)>\left(10+1\right)\left(10^2+1\right)\left(10^4+1\right)\left(10^8+1\right)\left(10^{16}+1\right)\left(10^{32}+1\right)=A\)Vậy B>A
giải rõ hơn đc ko bạn