K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

\(30A=\frac{30^{32}+30}{30^{32}+1}=\frac{30^{32}+1+29}{30^{32}+1}=1+\frac{29}{30^{32}+1}\)

\(30B=\frac{30^{33}+30}{30^{33}+1}=\frac{30^{33}+1+29}{30^{33}+1}=1+\frac{29}{30^{33}+1}\)

Vì \(\frac{29}{30^{32}+1}>\frac{29}{30^{33}+1}\) nên \(1+\frac{29}{30^{32}+1}>1+\frac{29}{30^{33}+1}\Rightarrow30A>30B\Rightarrow A>B\)

Vậy \(A>B.\)

Chúc bạn học tốt.

Mk nghĩ 3323 > 2232

Mình ko bít cách làm

Thông cảm nha

4 tháng 2 2017

Ta có:

\(33^{23}>33^{22}\)

\(22^{32}< 22^{33}\)

mà:\(33^{22}=33^{2\cdot11}=\left(33^2\right)^{11}\)

\(22^{33}=22^{3\cdot11}=\left(22^3\right)^{11}\)

vậy ta chỉ cần so sánh \(33^2\) và\(22^3\)

\(33^2=1089\);\(22^3=10648\)

vậy \(33^{22}< 22^{33}\)

31 tháng 10 2021

 Mk săpp thi rồi nên hơi nhiều bài mong mn giúp mk !!!

31 tháng 10 2021

\(1,\\ a,3^{2^3}=3^8>3^6=\left(3^2\right)^3\\ b,\left(-8\right)^9=\left(-2\right)^{27}< \left(-2\right)^{25}=\left(-32\right)^5\\ c,2^{21}=8^7< 9^7=3^{14}\\ 2,\)

\(a,\) Áp dụng tcdtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

\(b,\) Sửa: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow a=bk;c=dk\)

\(\Leftrightarrow\dfrac{ab}{cd}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2};\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2}{d^2}\\ \LeftrightarrowĐpcm\)

7 tháng 5 2019

-(1/3)<-(1/5)=>-(1/3)^33<-(1/5)^31

Đúng 100000000000000000000000000000000000000000%

7 tháng 5 2019

đùa thôi sai đó

a: \(33^{44}=\left(33^4\right)^{11}\)

\(44^{33}=\left(44^3\right)^{11}\)

mà \(33^4>44^3\)

nên \(33^{44}>44^{33}\)

a: \(33^{44}=1185921^{11}\)

\(44^{33}=85184^{11}\)

mà 1185921>85184

nên \(33^{44}>44^{33}\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)      Ta có \(\frac{{ - 2}}{3} < 0\) và \(\frac{1}{{200}} > 0\) nên \(\frac{{ - 2}}{3}\)<\(\frac{1}{{200}}\).

b)      Ta có: \(\frac{{139}}{{138}} > 1\) và \(\frac{{1375}}{{1376}} < 1\) nên \(\frac{{139}}{{138}}\) > \(\frac{{1375}}{{1376}}\).

c)      Ta có: \(\frac{{ - 11}}{{33}} = \frac{{ - 1}}{3}\) và \(\frac{{25}}{{ - 76}} = \frac{{ - 25}}{{76}} > \frac{{ - 25}}{{75}} = \frac{{ - 1}}{3}\,\,\,\, \Rightarrow \frac{{25}}{{ - 76}} > \frac{{ - 11}}{33}\).

a: -2/3<0<1/200

b: 139/138>1

1375/1376<1

=>139/138>1375/1376

c: -11/33=-1/3=-25/75<-25/76