Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}\)
\(=3\sqrt{2}-12\sqrt{2}+8\sqrt{2}-5\sqrt{2}\)
\(=-6\sqrt{2}\)
2) \(\sqrt{50}-\sqrt{18}+\sqrt{200}-\sqrt{162}\)
\(=5\sqrt{2}-3\sqrt{2}+10\sqrt{2}-9\sqrt{2}\)
\(=3\sqrt{2}\)
3) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
\(=5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
\(=-2\sqrt{5}\)
4) \(5\sqrt{48}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)
\(=20\sqrt{3}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}\)
\(=4\sqrt{3}\)
5) \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+\dfrac{10}{3}\sqrt{3}\)
\(=-\dfrac{17}{3}\sqrt{3}\)
Lời giải:
$\sqrt{3}+5> \sqrt{1}+5=6$
$\sqrt{2}+\sqrt{11}< \sqrt{4}+\sqrt{16}=6$
$\Rightarrow \sqrt{3}+5> \sqrt{2}+\sqrt{11}$
1/ bình phương hai vế được (căn11)^2+(căn5)^2=11+5 4^2=16 vậy căn 11+căn 5=4
2/ tương tự (3 căn3 )^2=27 (căn19)^2-(căn 2)^2=19-2=17 vậy 3 căn 3 >căn 19-căn2
b: \(\sqrt{\dfrac{3}{2}}>\sqrt{\dfrac{2}{2}}=1\)
a: \(\left(2\sqrt{5}-3\sqrt{2}\right)^2=38-12\sqrt{10}=1+37-12\sqrt{10}\)
\(1^2=1\)
mà \(37-12\sqrt{10}< 0\)
nên \(2\sqrt{5}-3\sqrt{2}< 1\)
\(\left(5-2\sqrt{7}\right)^2=53-20\sqrt{7}=19+34-20\sqrt{7}\)
\(\left(3-\sqrt{10}\right)^2=19-6\sqrt{10}\)
mà \(34-20\sqrt{7}>-6\sqrt{10}\)
nên \(5-2\sqrt{7}>3-\sqrt{10}\)
tại sao phần 34-20√7 lại lớn hơn 6√10(ý mình ở đây là bạn giải thích lại giúp mình là vì sao nó lại thế)
\(y=f\left(x\right)=\left(\sqrt{3}+1\right)x-5\)
Vì \(\sqrt{3}+1>0\) nên hs đồng biến trên R
Mà \(2+\sqrt{3}< 3+\sqrt{3}\)
Vậy \(f\left(2+\sqrt{3}\right)< f\left(3+\sqrt{3}\right)\)
\(5\sqrt{2}+\sqrt{75}=5\sqrt{2}+5\sqrt{3}\)
\(5\sqrt{3}+\sqrt{50}=5\sqrt{3}+5\sqrt{2}\)
\(\Rightarrow5\sqrt{2}+\sqrt{75}=5\sqrt{3}+\sqrt{50}\)