Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{100}=\left(2^5\right)^{20}=\left(32\right)^{20}\)
\(3^{65}=\left(3^{3,25}\right)^{20}=\left(\approx35,5\right)^{20}\)
vì \(32^{20}< 35,5^{20}\Rightarrow2^{100}< 3^{65}\)
So sánh: `2^250` và `3^100`
\(2^{250}=\left(2^5\right)^{50}=32^{50}\)
\(3^{100}=\left(3^2\right)^{50}=9^{50}\)
`-> 32^50 > 9^50`
`-> 2^250 > 3^100`
Ta có :
2150 = ( 23 )50 = 850
3100 = ( 32 )50 = 950
vì 8 < 9 nên 850 < 950 hay 2150 < 3100
\(2^{150}=\left(2^3\right)^{50}=8^{50}\)
\(3^{100}=\left(3^2\right)^{50}=9^{50}\)
\(8^{50}>9^{50}\Rightarrow2^{150}< 3^{100}\)
2^150=(2^3)^50=8^50
3^100=(3^2)^50=9^50
9^50 > 8^50 = > 3^100 > 2 ^150
**** mik nha
2^150=(2^3)^50=8^50
3^100=(3^2)^50=9^50
9^50 > 8^50 = > 3^100 > 2 ^150
tick mik nha
nhơ sđó
Ta có:
+) 2150=(23)50
+) 3100=(32)50
Mà (23)50<(32)<50
=> 2150<3100
Vậy ...
Chúc bạn học tốt
2150 và 3100
2150 = ( 23 ) 50 = 850
3100 = ( 32 ) 50 = 950
Vì 8 < 9
= > 850 < 950
Đành dùng cách giảm bậc lũy thừa :v Cách này mới nghĩ ra:
\(2^{3^{100}}=2^{\left(3^{50}\right)^2}\) và \(3^{2^{100}}=3^{\left(2^{50}\right)^2}\)
Ta sẽ so sánh: \(2^{3^{50}}\) và \(3^{2^{50}}\)
Ta có: \(2^{3^{50}}=2^{\left(3^5\right)^{10}}\) và \(3^{2^{50}}=3^{\left(2^5\right)^{10}}\)
Ta sẽ so sánh: \(2^{3^5}\)và \(3^{2^5}\)
Lại có: \(2^{3^5}=2^{\left(3^1\right)^5}\) và \(3^{2^5}=3^{\left(2^1\right)^5}\)
Ta sẽ so sánh: \(2^3\) và \(3^2\)
Ta có: \(2^3=8< 9=3^2\) tức là: \(2^3< 3^2\)
Từ đó suy ra: \(2^{3^{100}}< 3^{2^{100}}\)
2^100 > 3^65
chắc vậy