Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)
\(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)
Mà \(\frac{1}{n+2}>\frac{1}{n+4}\)
Nên \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)
Ta quy đồng hai phân số trên thì được
\(\frac{n^2+2n}{\left(n+1\right)\left(n+2\right)}=\frac{n^2+2n+1}{\left(n+1\right)\left(n+2\right)}\)
Vậy thì ta có n/n+1<n+1/n+2
Lời giải:
$\frac{n+3}{n+4}=\frac{(n+4)-1}{n+4}=1-\frac{1}{n+4}$
$\frac{n+1}{n+2}=\frac{(n+2)-1}{n+2}=1-\frac{1}{n+2}$
Vì $n+4> n+2$ nên $\frac{1}{n+4}< \frac{1}{n+2}$
Suy ra $1-\frac{1}{n+4}> 1-\frac{1}{n+2}$
Hay $\frac{n+3}{n+4}> \frac{n+1}{n+2}$
-------------------------
$\frac{n-1}{n+4}< \frac{n-1}{n+2}=\frac{(n+2)-3}{n+2}=1-\frac{3}{n+2}$
$<1-\frac{n+3}=\frac{n}{n+3}$
\(1-\frac{n}{n+2}=\frac{n+2}{n+2}-\frac{n}{n+2}=\frac{2}{n+2}\)
\(1-\frac{n-1}{n+4}=\frac{n+4}{n+4}-\frac{n-1}{n+4}=\frac{n+5}{n+4}\)
Mà \(\frac{2}{n+2}1\)nên \(\frac{2}{n+2}
\(\frac{n}{n+2}=\frac{n+2-2}{n+2}=\frac{n+2}{n+2}-\frac{2}{n+2}=1-\frac{2}{n+2}\)
\(\frac{n-1}{n+4}=\frac{n+4-5}{n+4}=\frac{n+4}{n+4}-\frac{5}{n+4}=1-\frac{5}{n+4}\)
Ta có: \(\frac{2}{n+2}=\frac{\left(n+4\right)2}{\left(n+4\right)\left(n+2\right)}=\frac{2n+8}{n^2+2n+4n+8}\)
\(\frac{5}{n+4}=\frac{\left(n+2\right)5}{\left(n+2\right)\left(n+4\right)}=\frac{5n+10}{n^2+4n+2n+8}\)
Vì \(\frac{2n+8}{n^2+2n+4n+8}