Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(721< 834\Rightarrow\frac{5}{721}>\frac{5}{834}\)
b) Ta có \(\frac{4}{37}< \frac{5}{37}< \frac{5}{36}\Rightarrow\frac{4}{37}< \frac{5}{36}\)
c) Ta có \(\frac{1994}{1995}=1-\frac{1}{1995}\)
\(\frac{1999}{2000}=1-\frac{1}{2000}\)
Vì \(\frac{1}{1995}>\frac{1}{2000}\Rightarrow1-\frac{1}{1995}< 1-\frac{1}{2000}\Rightarrow\frac{1994}{1995}< \frac{1999}{2000}\)
d) Ta có :\(\frac{489}{487}=1+\frac{2}{487}\)
\(\frac{487}{485}=1+\frac{2}{485}\)
Vì \(\frac{2}{485}>\frac{2}{487}\Rightarrow1+\frac{2}{485}>1+\frac{2}{487}\Rightarrow\frac{489}{487}>\frac{487}{485}\)
e) Ta có : \(\frac{123.125+119}{124.125-177}=\frac{123.125+119}{\left(123+1\right).125-177}=\frac{123.125+119}{123.125+125-177}=\frac{123.125+119}{123.125-52}\)
\(=\frac{123.125-52+171}{123.125-52}=1+\frac{171}{123.125-52}>1\)
f) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{199}-\frac{1}{200}=1-\frac{1}{200}< 1\)
A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
A < \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
A < 1 - \(\frac{1.}{100}\)
A < \(\frac{99}{100}< \frac{199}{100}\)
=> A < \(\frac{199}{100}\)
b,
S = \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{99}{10^2}\)
S = \(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{9.11}{10.10}\)
S = \(\frac{1.3.2.4.3.5.4.6.5.7...9.11}{2.2.3.3.4.4...10.10}\)
S = \(\frac{1.2.3^2.4^2.5^2...9^2.10.11}{2^2.3^3.4^2...10^2}\)
S = \(\frac{1.11}{2.10}\)
S = \(\frac{11}{20}\)
a/ A = B
vì \(\frac{10^{1993}+10}{10^{1993}+1}=1\)và \(\frac{10^{1994}+10}{10^{1994}+1}=1\)
Học tốt
A = B
vì \(\frac{10^{1993}+10}{10^{1993}+1}=10\) và \(\frac{10^{1994}+10}{10^{1994}+1}=10\)
học tốt
\(A=\frac{10^{1993}+10}{10^{1993}+1}\)
\(=\frac{10^{1993}+1+9}{10^{1993}+1}\)
\(=\frac{10^{1993}+1}{10^{1993}+1}+\frac{9}{10^{1993}+1}\)
\(=1+\frac{9}{10^{1993}+1}\)( 1 )
\(B=\frac{10^{1994}+10}{10^{1994}+1}\)
\(=\frac{10^{1994}+1+9}{10^{1994}+1}\)
\(=\frac{10^{1994}+1}{10^{1994}+1}+\frac{9}{10^{1994}+1}\)
\(=1+\frac{9}{10^{1994}+1}\)( 2 )
Vì \(\frac{9}{10^{1993}+1}>\frac{9}{10^{1994}+1}\)( 3 )
Từ ( 1 )( 2 )( 3 )\(\Rightarrow1+\frac{9}{10^{1993}+1}>1+\frac{9}{10^{1994}+1}\)
\(\Rightarrow A>B\)