Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\hept{\begin{cases}\frac{a-1}{a}=\frac{a}{a}-\frac{1}{a}=1-\frac{1}{a}\\\frac{b+1}{b}=\frac{b}{b}+\frac{1}{b}=1+\frac{1}{b}\end{cases}}\)
Ta có:
\(\hept{\begin{cases}-\frac{1}{a}\le1\\\frac{1}{b}\ge1\end{cases}}\)
\(\Rightarrow\)\(-\frac{1}{a}\le1\le\frac{1}{b}\)
\(\Rightarrow\)\(1-\frac{1}{a}\le2\le1+\frac{1}{b}\)
\(\Rightarrow\)\(\frac{a-1}{a}\le\frac{b+1}{b}\)
Nếu x < y thì \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\) < \(\frac{c}{d}\) hay \(\frac{a}{b}\) < \(\frac{2m}{2n}\) < \(\frac{c}{d}\) suy ra \(\frac{a}{b}\) < \(\frac{m}{n}\) < \(\frac{c}{d}\) , do đó x < z < y
tương tự nếu x > y thì x > z > y
1.a) Ta có:
\(\frac{18}{-25}=-\frac{18.12}{25.12}=-\frac{216}{300}< -\frac{213}{300}\)
Vậy \(-\frac{213}{300}>\frac{18}{-25}\)
b) Ta có:
\(0,75>0>-\frac{3}{4}\)
Vậy \(0,75>-\frac{3}{4}\)
2, * Khi a, b cùng dấu thì \(\frac{a}{b}>0\)
* Khi a, b khác dấu thì \(\frac{a}{b}< 0\)
Đây là kiến thức cơ bản !
Cố lên cái gì đề sai rồi kìa
Đúng mà cô giáo mik ghi vậy