K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2017

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2016}-\frac{1}{2017}.\)

=> \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}=\frac{1}{2}-\frac{1}{2017}< \frac{1}{2}\)

1 tháng 1 2019

Toán lớp 6 nhá!

Ta có:

1! có tận cùng là 1

tương tự: 2!=2

3!=6

4!=24

Từ 5! trở lên có tận cùng là:0

=> CSTC của 1!+2!+........+2016!+2017! là:

1+2+6+4+(....0)+(...0)+....+(....0)+(....0)=(....3)
Vậy: 1!+2!+.....+2017! có CSTC là: 3

 

2 tháng 8 2016

\(A=\left(1-\frac{1}{2}\right).\left(1-\frac{2}{3}\right)...\left(1-\frac{1}{2017}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}...\frac{2015}{2016}.\frac{2016}{2017}\)

\(A=\frac{1.2.3...2016}{2.3.4...2017}=\frac{1}{2017}\)

2 tháng 8 2016

\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot\left(1-\frac{1}{5}\right)\cdot...\cdot\left(1-\frac{1}{2016}\right)\cdot\left(1-\frac{1}{2017}\right)\)

\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{2015}{2016}\cdot\frac{2016}{2017}\)

\(A=\frac{1\cdot2\cdot3\cdot4\cdot....\cdot2015\cdot2016}{2\cdot3\cdot4\cdot5\cdot....\cdot2016\cdot2017}\)

\(A=\frac{1}{2017}\)

19 tháng 10 2017

a1

b2

c3

d4

12 tháng 3 2018

hình như cái này đâu phải toán lớp 5 đâu bạn

12 tháng 3 2018

nhầm toán lớp 6

19 tháng 12 2016

1+2+.....+100 = 5050

2+4+....+2016 = 1017072

1+3+5+....+2017=1018081

19 tháng 12 2016

Đây là bài của lớp 4 mà

21 tháng 6 2016

\(A=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\times...\times\frac{2015}{2016}\times\frac{2016}{2017}=\frac{1}{2017}\)

1 tháng 3 2017

=\(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+.......+\(\frac{1}{2016}\)-\(\frac{1}{2017}\)+1

=\(\frac{1}{1}\)-\(\frac{1}{2017}\)+1

=\(\frac{2016}{2017}\)+1

=\(\frac{1}{2017}\)

1 tháng 3 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}+1\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}+1\)

\(=1-\frac{1}{2017}+1\)

\(=\frac{2016}{2017}+1\)

\(=\frac{4033}{2017}\)