K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2021

\(S=\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}\)

Ta có :

+) \(\dfrac{1}{9}+\dfrac{1}{10}< \dfrac{1}{8}+\dfrac{1}{8}\)

+) \(\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{40}+\dfrac{1}{40}\)

\(\Leftrightarrow S< \dfrac{1}{5}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{40}+\dfrac{1}{40}\)

\(\Leftrightarrow S< \dfrac{1}{2}\)

Vậy,,,

Ta có: \(\dfrac{1}{9}+\dfrac{1}{10}< \dfrac{1}{8}+\dfrac{1}{8}=\dfrac{2}{8}=\dfrac{1}{4}\)

\(\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{40}+\dfrac{1}{40}=\dfrac{2}{40}=\dfrac{1}{20}\)

Do đó: \(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{4}+\dfrac{1}{20}=\dfrac{6}{20}=\dfrac{3}{10}\)

\(\Leftrightarrow\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{3}{10}+\dfrac{1}{5}=\dfrac{3}{10}+\dfrac{2}{10}=\dfrac{1}{2}\)

hay \(S< \dfrac{1}{2}\)(đpcm)

2 tháng 4 2017

bài 1

a)<

b)>

27 tháng 8 2017

1^3-3^5-(-3^5)+1^64-2^9-1^36+1^15

=1+(-3^5+3^5)+1-2^9-1+1

=2-2^9

=-510

19 tháng 10 2019

Ta có: \(A=\frac{7^{10}}{1+7+7^2+...+7^9}\)

\(\Rightarrow\frac{1}{A}=\frac{1+7+7^2+...+7^9}{7^{10}}=\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7}\)

Lại có: \(B=\frac{5^{10}}{1+5+5^2+...+5^9}\)

\(\Rightarrow\frac{1}{B}=\frac{1+5+5^2+...+5^9}{5^{10}}=\frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5}\)

Ta có: \(7^{10}>5^{10}\Rightarrow\frac{1}{7^{10}}< \frac{1}{5^{10}}\)

         \(7^9>5^9\Rightarrow\frac{1}{7^9}< \frac{1}{5^9}\)

         \(7^8>5^8\Rightarrow\frac{1}{7^8}< \frac{1}{5^8}\)

          \(...............................\)

         \(7>5\Rightarrow\frac{1}{7}< \frac{1}{5}\)

\(\Rightarrow\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7}< \frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5}\)

\(\Rightarrow\frac{1}{A}< \frac{1}{B}\Rightarrow A>B\)

Chúc bạn học tốt !!!