Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, số nguyên tố > 2 nên số đó ko chia hết cho 2
=> số đó lẻ
=> số đó có dạng 4n+-1
b, số nguyên tố > 3 nên số nguyên tố đó lẻ và ko chia hết co 3
=> số đó ko thể có dạng 6k ; 6k+-2 ; 6k+3
=> số đó có dạng 6k+-1
Tk mk nha
Số nguyên tố lớn nhất có hai chữ số là 97.
Số đối của số nguyên tố nhỏ nhất có hai chữ số là -11
- Số nguyên tố lớn nhất có 2 chữ số là mấy ?
Trả lời : Số nguyên tố lớn nhất có 2 chữ số là \(97\)
- Số đối của số nguyên tố nhỏ nhất có 2 chữ số là mấy ?
Trả lời :
Ta có :
Số nguyên tố nhỏ nhất có 2 chữ số là \(11\)
Mà số đối của \(11\)là \(-11\)
Vậy số đối của số nguyên tố nhỏ nhất có 2 chữ số là \(-11\).
Giải : a) Mỗi số tự nhiên khi chia cho 6 có một trong các số dư 0 , 1 , 2 , 3 , 4 , 5 . Do đó mọi số tự nhiên đều viết được dưới một trong các dạng 6n - 2 , 6n - 1 , 6n , 6n + 1 , 6n + 2 , 6n + 3 . Vì m là số nguyên tố lớn hơn 3 nên m không chia hết cho 2 , không chia hết cho 3 , do đó m không có dạng 6n - 2 , 6n , 6n + 2 , 6n + 3 . Vậy m viết được dưới dạng 6n + 1 hoặc 6n - 1 ( VD : 17 = 6 . 3 - 1 , 19 = 6 . 3 + 1 ).
b) Không phải mọi số có dạng 6n \(\pm\)1 ( n \(\in\)N ) đều là số nguyên tố . Chẳng hạn 6 . 4 + 1 = 25 không là số nguyên tố .
=> ( đpcm ).
Bài làm
Các số nguyên tố có đặc điểm là toàn là số lẻ và duy nhất một số nhỏ nhất là số chẵn " 2 " .
=> Số nguyên tố lớn hơn 5 có dang là số nguyên dương và là số lẻ.
# Chúc bạn học tốt #
Ba số nguyên tố có tổng là \(38\)là một số chẵn nên trong ba số đó có số \(2\).
Tổng hai số còn lại là \(36\).
Gọi hai số đó là \(a,b\).
Ta có: \(a^2+b^2=\left(a+b\right)^2-2ab=36^2-2ab\)
Để \(\left(a^2+b^2\right)_{max}\)thì \(ab\)đạt min.
Nếu \(a=b\)thì \(a=b=18\)không là số nguyên tố.
Không mất tính tổng quát, giả sử \(a>b>0\)
Ta có nhận xét rằng \(a-b\)càng lớn thì \(ab\)càng nhỏ.
Thật vậy, nếu ta thay \(a\)bằng \(a+1\)và \(b\)bằng \(b-1\)thì:
\(\left(a+1\right)\left(b-1\right)=ab-a+b-1=ab-\left(a-b\right)-1< ab\).
Do đó để thỏa mãn ycbt thì ta cần tìm hai số nguyên tố \(a,b\)sao cho \(a+b=36\)và \(b\)nhỏ nhất.
Với \(b=3\Rightarrow a=33\)loại.
Với \(b=5\Rightarrow a=31\)(thỏa mãn)
Vậy ba số nguyên tố thỏa mãn ycbt là \(2,5,31\).
Khi đó tổng bình phương lớn nhất là: \(2^2+5^2+31^2=990\).
331 ban nhe
tick cho minh di