K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2018

x(5x + 1) + 4(x + 3) > 5x2

ó 5x2 + x + 4x + 12 > 5x2

ó 5x > -12

ó x > -12/5 

Vậy nghiệm của bất phương trình là x > -12/5.

Số nguyên lớn nhất thỏa mãn bất phương trình là x = 02

Đáp án cần chọn là: D

24 tháng 5 2021

Câu 1a : tự kết luận nhé 

\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)

Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)

\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)

c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)

\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0 

24 tháng 5 2021

1) 2(x + 3) = 5x - 4

<=> 2x + 6 = 5x - 4

<=> 3x = 10

<=> x = 10/3

Vậy x = 10/3 là nghiệm phương trình 

b) ĐKXĐ : \(x\ne\pm3\)

\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)

=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)

=> x + 3 - 2(x - 3) = 5 - 2x

<=> -x + 9 = 5 - 2x

<=> x = -4 (tm) 

Vậy x = -4 là nghiệm phương trình 

c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)

<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)

<=> 3(x + 1) \(\ge\)2(2x - 2)

<=> 3x + 3 \(\ge\)4x - 4

<=> 7 \(\ge\)x

<=> x \(\le7\)

Vậy x \(\le\)7 là nghiệm của bất phương trình 

Biểu diễn

-----------------------|-----------]|-/-/-/-/-/-/>

                           0             7

29 tháng 1 2020

Câu d : \({2x \over x+1}\) + \({18\over x^2+2x-3}\) = \({2x-5 \over x+3}\)

29 tháng 1 2020

a) \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)

\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2=0\right)\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-4x+x-2=0\right)\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2-4\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x+1\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=-1\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\pm2;-1\right\}\)

b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=0\)

\(\Leftrightarrow x-2=0\)hoặc \(x+2=0\)hoặc \(x^2-10=0\)

\(\Leftrightarrow x=2\)hoặc \(x=-2\)hoặc \(x=\pm\sqrt{10}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{\pm2;\pm\sqrt{10}\right\}\)

c) \(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2+5x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\left(tm\right)\\2\left(x+\frac{5}{4}\right)^2+\frac{7}{16}=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)

d) Xem lại đề

10 tháng 6 2020

1) \(21x^2+21y^2+z^2\)

\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)

\(\ge9\left(x+y\right)^2+z^2+3.2xy\)

\(\ge2.3\left(x+y\right).z+6xy\)

\(=6\left(xy+yz+zx\right)=6.13=78\)

Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6

10 tháng 6 2020

2) \(x+y+z=3xyz\)

<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)

Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3

Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)

Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)

\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)

Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)

Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\)\(b=2\sqrt{\frac{3}{5}}\)

khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)

10 tháng 3 2020

ĐKXĐ : \(x\ne\pm1\)

a) Ta có : 

\(P=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{\left(x-1\right)\left(x+1\right)+x+2-x^2}{x\left(x-1\right)}\right)\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{x+1}{x\left(x-1\right)}\right)\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\frac{x\left(x-1\right)}{x+1}=\frac{x^2}{x-1}\)

Vậy : \(P=\frac{x^2}{x-1}\)

b) Ta có : \(x^2+2x-3=0\)

\(\Leftrightarrow x^2+3x-x-3=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow x=-3\) ( Do \(x=1\) không thỏa mãn ĐKXĐ )

Thay \(x=-3\) vào P ta có :

\(P=\frac{\left(-3\right)^2}{-3-1}=\frac{9}{-4}=-\frac{9}{4}\)

Vậy : \(P=-\frac{9}{4}\) với x thỏa mãn đề

c)  Phải là : \(x>1\) nhé bạn :

Ta có :

\(P=\frac{x^2}{x-1}=\frac{x^2-1+1}{\left(x-1\right)}=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)}+\frac{1}{x-1}=x+1+\frac{1}{x-1}\)

\(=\left(x-1+\frac{1}{x-1}\right)+2\)

Ta có : \(x>1\Rightarrow x-1>0,\frac{1}{x-1}>0\)

Áp dụng BĐT AM-GM cho 2 số dương ta có :

\(x-1+\frac{1}{x-1}\ge2\)

Do đó : \(P\ge2+2=4\)

Dấu "="xảy ra \(\Leftrightarrow\left(x-1\right)^2=1\Leftrightarrow x=2\) ( Do \(x>1\) )

Vậy : GTNN của P là 4 tại \(x=2\)

bài này mình cux ko bt làm

15 tháng 4 2019

A/  \(2\left(5x-3\right)=7x-18.\)

\(10x-6=7x-18\)

\(10-7x=6-18\)

\(3x=-12\)

\(x=-\frac{12}{3}=4\)

\(\Rightarrow S=\left\{4\right\}\)

B/  \(3x\left(x-2\right)+2x-4=0\)

\(3x\left(x-2\right)+2\left(x-2\right)=0\)

\(\left(x-2\right)\left(3x+2\right)=0\)

\(\orbr{\begin{cases}x-2=0\Rightarrow x=2\\3x+2=0\Rightarrow3x=-2\Rightarrow x=-\frac{2}{3}\end{cases}}\)

\(\Rightarrow S=\left\{2;-\frac{2}{3}\right\}\)

C/  \(\frac{x+2}{3}\frac{x-3}{2}=\frac{x+5}{4}\)

\(\frac{\left(x+2\right)\left(x-3\right)}{3.2}=\frac{x+5}{4}\)

\(\frac{x^2-3x+2x-6}{6}=\frac{x+5}{4}\)

\(\frac{x^2-x-6}{6}=\frac{x+5}{4}\)

\(\frac{2\left(x^2-x-6\right)}{12}=\frac{3\left(x+5\right)}{12}\)

\(\frac{2x^2-2x-12}{12}=\frac{3x+15}{12}\)

\(\Rightarrow2x^2-2x-12=3x+15\)

(chuyển vế r làm tiếp)

15 tháng 4 2019

Bài 1 : 

\(a,2\left(5x-3\right)=7x-18\)

\(\Leftrightarrow10x-6=7x-18\)

\(\Leftrightarrow10x-7x=6-18\)

\(\Leftrightarrow3x=-12\)

\(\Leftrightarrow x=-4\)

PT có nghiệm S = { -4 }

\(b,3x\left(x-2\right)+2x-4=0\)

\(\Leftrightarrow3x^2-6x+2x-4=0\)

\(\Leftrightarrow3x^2-4x-4=0\)

\(\Leftrightarrow3x^2-6x+2x-4=0\)

\(\Leftrightarrow3x\left(x-2\right)+2\left(x-2\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x+2=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=2\end{cases}}\)

KL : ............

\(c,\frac{x+2}{3}-\frac{x-3}{2}=\frac{x+5}{4}\)

\(\Leftrightarrow\frac{4\left(x+2\right)}{12}-\frac{6\left(x-3\right)}{12}=\frac{3\left(x+5\right)}{12}\)

\(\Leftrightarrow4x+8-6x+18=3x+15\)

\(\Leftrightarrow4x-6x-3x=-8-18+15\)

\(\Leftrightarrow x=-9\)

KL : .......

5 tháng 6 2020

2) \(x^4-x^2+2x+2\)

\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)

\(=x^2\left(x-1+2\right)\left(x+1\right)\)

\(=x^2\left(x+1\right)^2\)

\(=\left(x^2+x\right)^2\)

Vậy \(x^4-x^2+2x+2\)là số chính phương với mọi số nguyên x