Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số nguyên âm lớn nhất có 2 chữ số : -10.
Theo đề ra, ta có ;
x - 910 = -10
x = (-10) + 910
x = 900.
Vậy x = 900.
#Riin
Ta có −5x + 2y = 7 ⇔ 2y = 7 + 5x ⇔ y = 5 x + 7 2 ⇔ y = 2 x + x + 7 2
Đặt x + 7 2 = t ⇒ x = 2t − 7 ⇒ y = 2.(2t − 7) + t ⇔ y = 5t – 14 t ∈ ℤ
Nên nghiệm nguyên của phương trình là x = 2 t − 7 y = 5 t − 14 t ∈ ℤ
Vì x, y nguyên âm nên x < 0 y < 0 ⇒ 2 t − 7 < 0 5 t − 14 < 0 ⇒ t < 7 1 t < 14 5 ⇒ t < 14 5
mà t ∈ ℤ ⇒ t ≤ 2
Vậy nghiệm cần tìm là (−3; −4)
Đáp án: C
Ta có:
\(\sqrt{x}< \sqrt{2}\)
\(\Leftrightarrow x< 2\)
Vì x nguyên không âm nên
\(\Rightarrow1\le x< 2\)
\(\Rightarrow x=1\)
\(\sqrt{x}\)<\(\sqrt{2}\)
<=> x<2
vì x nguyên không âm nên
\(\Rightarrow\)0<=x<2
\(\Rightarrow\)x=0;x=1
mà x lớn nhất nên x=1
1.nhan xet
voi a thuoc Z
\(\left[\sqrt{a^2}\right]=\left[\sqrt{a^2+1}\right]=...=\left[\sqrt{a^2+2a}\right]\)
do do\(\left[\sqrt{a^2}\right]+\left[\sqrt{a^2+1}\right]+...+\left[\sqrt{a^2+2a}\right]=\frac{2a\left(2a+1\right)}{2}=a\left(2a+1\right)\)
thay a=1 cho den 10
tu tinh ra 825
Đặt a+71=n2 (n thuộc N) <=> 4a+284=4n2 (1)
4a-31=m2 (m thuộc N) (2)
Trừ cả 2 vế của (1) cho 2 vế của (2) ta được:
4n2-m2=315
<=> (2n-m)(2n+m)=32.5.7
Vì m, n thuộc N nên ta có:
TH1: 2n-m=9 và 2n+m=35 <=>n=11;m=13
TH2:2n-m=3 và 2n+m=105 <=>n=27; m=51
TH3:2n-m=5 và 2n+m=67 <=>n=17 và m=29
TH4: 2n-m=7 và 2n+m=45 <=> n=13 và m=19
TH5:2n-m=15 và 2n+m=21 <=>n=9 và m=3
Ta có a+71=n2
=> a lớn nhất khi n lớn nhất
=>n=27
=>a=272-71=658
Vậy max a=658