Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $x-y=a$ và $xy=b$ thì hpt trở thành:
\(\left\{{}\begin{matrix}\left(x-y\right)+xy=13\\\left(x-y\right)^2+2xy=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=13\\a^2+2b=25\end{matrix}\right.\)
$a+b=13\Leftrightarrow b=13-a$. Thay vô pt $(2)$:
$a^2+2(13-a)=25$
$\Leftrightarrow a^2-2a+1=0\Leftrightarrow (a-1)^2=0$
$\Leftrightarrow a=1$
$\Rightarrow b=12$
Vậy $x-y=1\Rightarrow x=y+1$. Thay vô $xy=12$ thì:
$(y+1)y=12$
$\Leftrightarrow y^2+y-12=0$
$\Leftrightarrow (y-3)(y+4)=0$
$\Rightarrow y=3$ hoặc $y=-4$
Vậy $(x,y)=(4,3); (-3,-4)$
Thấy $4+3> -3+(-4)$ nên $T=(-3)+(-4)=-7$
a.\(\left\{{}\begin{matrix}4x+2y=14\\2x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=18\\2x-2y=4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\4-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\-2y=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
vậy hệ pt có ndn \(\left\{2;0\right\}\)
b.\(\left\{{}\begin{matrix}2x-4y=0\\3x+2y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=0\\6x+4y=16\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}8x=16\\2x-4y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\4-4y=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\-4y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
vậy hệ pt có ndn \(\left\{2;1\right\}\)
6. \(\left\{{}\begin{matrix}2y-4=0\\3x+y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}4x-6y=2\\x-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\\dfrac{2+6y}{4}-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-2\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{2}=1\\2x+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\left(1-\dfrac{y}{2}\right).3\\6\left(1-\dfrac{y}{2}\right)+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(1-\dfrac{y}{2}\right)\\y=\left(VNghiệm\right)\end{matrix}\right.\Leftrightarrow\) không tồn tại x, y
(Các câu khác tương tự nhé.)
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^4\left(x-y\right)+x-y=0\)
\(\Leftrightarrow\left(x^4+1\right)\left(x-y\right)=0\)
\(\Leftrightarrow x-y=0\Rightarrow x=y\)
Thay xuống (2):
\(x^3-3x^3+4x^3-4x^3=54\)
\(\Leftrightarrow-2x^3=54\Rightarrow x^3=-27\)
\(\Rightarrow x=-3\Rightarrow y=-3\)
Lời giải:
$3x^2-4xy+y^2=0$
$\Leftrightarrow 3x(x-y)-y(x-y)=0$
$\Leftrightarrow (x-y)(3x-y)=0$
$\Rightarrow x-y=0$ hoặc $3x-y=0$
Nếu $x-y=0\Leftrightarrow x=y$. Thay vào pt $(2)$:
$x^2+2x=8$
$\Leftrightarrow x^2+2x-8=0$
$\Leftrightarrow (x-2)(x+4)=0$
$\Rightarrow x=2$ hoặc $x=-4$.
Vậy hpt có nghiệm $(x,y)=(2,2); (-4,-4)$
Nếu $3x-y=0$
$\Leftrightarrow 3x=y$. Thay vô pt $(2)$:
$x^2+6x=8$
$\Leftrightarrow x^2+6x-8=0$
$\Rightarrow x=-3\pm \sqrt{17}$
$\Rightarrow y=3(-3\pm \sqrt{17})$ (tương ứng)
Vậy tổng cộng hpt có 4 nghiệm $(x,y)$ thực.